Skip to main content
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Merging multiple precipitation sources for flash flood forecasting


We investigated the effectiveness of combining gauge observations and satellite-derived precipitation on flood forecasting. Two data merging processes were proposed: the first one assumes that the individual precipitation measurement is non-bias, while the second process assumes that each precipitation source is biased and both weighting factor and bias parameters are to be calculated. Best weighting factors as well as the bias parameters were calculated by minimizing the error of hourly runoff prediction over Wu-Tu watershed in Taiwan. To simulate the hydrologic response from various sources of rainfall sequences, in our experiment, a recurrent neural network (RNN) model was used. The results demonstrate that the merged method used in this study can efficiently combine the information from both rainfall sources to improve the accuracy of flood forecasting during typhoon periods. The contribution of satellite-based rainfall, being represented by the weighting factor, to the merging product, however, is highly related to the effectiveness of ground-based rainfall observation provided gauged. As the number of gauge observations in the basin is increased, the effectiveness of satellite-based observation to the merged rainfall is reduced. This is because the gauge measurements provide sufficient information for flood forecasting; as a result the improvements added on satellite-based rainfall are limited. This study provides a potential advantage for extending satellite-derived precipitation to those watersheds where gauge observations are limited. © 2007 Elsevier B.V. All rights reserved.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View