Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Maximum strength and dislocation patterning in multi–principal element alloys

Abstract

Multi-principal element alloys (MPEAs) containing three or more components in high concentrations render a tunable chemical short-range order (SRO). Leveraging large-scale atomistic simulations, we probe the limit of Hall-Petch strengthening and deformation mechanisms in a model CrCoNi alloy and unravel chemical ordering effects. The presence of SRO appreciably increases the maximum strength and lowers the propensity for faulting and structure transformation, accompanied by intensification of planar slip and strain localization. Deformation grains exhibit notably different microstructures and dislocation patterns that prominently depend on their crystallographic orientation and the number of active slip planes. Grain of single-planar slip attains the highest volume fraction of deformation-induced structure transformation, and grain with double-slip planes develops the densest dislocation network. These results advancing the fundamental understanding of deformation mechanisms and dislocation patterning in MPEAs suggest a mechanistic strategy for tuning mechanical behavior through simultaneously tailoring grain texture and local chemical order.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View