Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

SPIO-labeled Yttrium Microspheres for MR Imaging Quantification of Transcatheter Intrahepatic Delivery in a Rodent Model.

Abstract

Purpose

To investigate the qualitative and quantitative impacts of labeling yttrium microspheres with increasing amounts of superparamagnetic iron oxide (SPIO) material for magnetic resonance (MR) imaging in phantom and rodent models.

Materials and methods

Animal model studies were approved by the institutional Animal Care and Use Committee. The r2* relaxivity for each of four microsphere SPIO compositions was determined from 32 phantoms constructed with agarose gel and in eight concentrations from each of the four compositions. Intrahepatic transcatheter infusion procedures were performed in rats by using each of the four compositions before MR imaging to visualize distributions within the liver. For quantitative studies, doses of 5, 10, 15, or 20 mg 2% SPIO-labeled yttrium microspheres were infused into 24 rats (six rats per group). MR imaging R2* measurements were used to quantify the dose delivered to each liver. Pearson correlation, analysis of variance, and intraclass correlation analyses were performed to compare MR imaging measurements in phantoms and animal models.

Results

Increased r2* relaxivity was observed with incremental increases of SPIO microsphere content. R2* measurements of the 2% SPIO-labeled yttrium microsphere concentration were well correlated with known phantom concentrations (R(2) = 1.00, P < .001) over a broader linear range than observed for the other three compositions. Microspheres were heterogeneously distributed within each liver; increasing microsphere SPIO content produced marked signal voids. R2*-based measurements of 2% SPIO-labeled yttrium microsphere delivery were well correlated with infused dose (intraclass correlation coefficient, 0.98; P < .001).

Conclusion

MR imaging R2* measurements of yttrium microspheres labeled with 2% SPIO can quantitatively depict in vivo intrahepatic biodistribution in a rat model.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View