Skip to main content
eScholarship
Open Access Publications from the University of California

Analysis of the reaction mechanism and catalytic activity of metal-substituted beta zeolite for the isomerization of glucose to fructose

  • Author(s): Li, YP
  • Head-Gordon, M
  • Bell, AT
  • et al.

Published Web Location

https://doi.org/10.1021/cs401054f
Abstract

Glucose-fructose isomerization mediated by Sn-BEA is investigated using an extended QM/MM model containing 208 tetrahedral atoms. The isomerization mechanism consists of a sequence of ring-opening, isomerization, and ring-closing processes, consistent with the previously reported experimental observations. In agreement with the experimentally observed kinetic isotope effect, the rate-determining step is found to involve a hydride shift from the C2 carbon to the C1 carbon. The apparent activation energy for the rate-limiting step is 22.3 kcal/mol at 343 K. The difference in the reaction barriers for the partially hydrolyzed and the fully coordinated Sn sites was investigated using energy decomposition analysis. It is found that the higher activity of the partially hydrolyzed site comes from the extra flexibility provided by the defect in the lattice. The effect of substituting Sn in the active site by Ti, Zr, V, Nb, Si, and Ge was examined, and it was found that Sn and Zr are metals that result in the lowest reaction barrier for glucose isomerization. By using energy decomposition analysis, two physical properties are shown to contribute to the magnitude of the reaction barrier: the polarizability of the metal atom in the active site and the Brønsted basicity of the oxygen atom bound to the metal atom. © 2014 American Chemical Society.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View