Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Adult diffuse glioma GWAS by molecular subtype identifies variants in D2HGDH and FAM20C

Abstract

Background

Twenty-five germline variants are associated with adult diffuse glioma, and some of these variants have been shown to be associated with particular subtypes of glioma. We hypothesized that additional germline variants could be identified if a genome-wide association study (GWAS) were performed by molecular subtype.

Methods

A total of 1320 glioma cases and 1889 controls were used in the discovery set and 799 glioma cases and 808 controls in the validation set. Glioma cases were classified into molecular subtypes based on combinations of isocitrate dehydrogenase (IDH) mutation, telomerase reverse transcriptase (TERT) promoter mutation, and 1p/19q codeletion. Logistic regression was applied to the discovery and validation sets to test for associations of variants with each of the subtypes. A meta-analysis was subsequently performed using a genome-wide P-value threshold of 5 × 10-8.

Results

Nine variants in or near D-2-hydroxyglutarate dehydrogenase (D2HGDH) on chromosome 2 were genome-wide significant in IDH-mutated glioma (most significant was rs5839764, meta P = 2.82 × 10-10). Further stratifying by 1p/19q codeletion status, one variant in D2HGDH was genome-wide significant in IDH-mutated non-codeleted glioma (rs1106639, meta P = 4.96 × 10-8). Further stratifying by TERT mutation, one variant near FAM20C (family with sequence similarity 20, member C) on chromosome 7 was genome-wide significant in gliomas that have IDH mutation, TERT mutation, and 1p/19q codeletion (rs111976262, meta P = 9.56 × 10-9). Thirty-six variants in or near GMEB2 on chromosome 20 near regulator of telomere elongation helicase 1 (RTEL1) were genome-wide significant in IDH wild-type glioma (most significant was rs4809313, meta P = 2.60 × 10-10).

Conclusions

Performing a GWAS by molecular subtype identified 2 new regions and a candidate independent region near RTEL1, which were associated with specific glioma molecular subtypes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View