Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Linear stability of algebraic Ricci solitons

  • Author(s): Jablonski, Michael
  • Petersen, Peter
  • Williams, Michael Bradford
  • et al.
Abstract

AbstractWe consider a modified Ricci flow equation whose stationary solutions include Einstein and Ricci soliton metrics, and we study the linear stability of those solutions relative to the flow. After deriving various criteria that imply linear stability, we turn our attention to left-invariant soliton metrics on (non-compact) simply connected solvable Lie groups and prove linear stability of many such metrics. These include an open set of two-step solvsolitons, all two-step nilsolitons, two infinite families of three-step solvable Einstein metrics, all nilsolitons of dimensions six or less, and all solvable Einstein metrics of dimension seven or less with codimension-one nilradical. For each linearly stable metric, dynamical stability follows from a generalization of the techniques of Guenther, Isenberg, and Knopf.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View