- Main
An odorant-binding protein required for suppression of sweet taste by bitter chemicals.
Published Web Location
https://doi.org/10.1016/j.neuron.2013.06.025Abstract
Animals often must decide whether or not to consume a diet that contains competing attractive and aversive compounds. Here, using the fruit fly, Drosophila melanogaster, we describe a mechanism that influences this decision. Addition of bitter compounds to sucrose suppressed feeding behavior, and this inhibition depended on an odorant-binding protein (OBP) termed OBP49a. In wild-type flies, bitter compounds suppressed sucrose-induced action potentials, and the inhibition was impaired in Obp49a mutants. However, loss of OBP49a did not affect action potentials in sugar- or bitter-activated gustatory receptor neurons (GRNs) when the GRNs were presented with just one type of tastant. OBP49a was expressed in accessory cells and acted non-cell-autonomously to attenuate nerve firings in sugar-activated GRNs when bitter compounds were combined with sucrose. These findings demonstrate an unexpected role for an OBP in taste and identify a molecular player involved in the integration of opposing attractive and aversive gustatory inputs.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file.
-
-
-
-
-
-
-
-
-
-
-
-
-
-