Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Semiparametric Regression Analysis of Panel Count Data: A Practical Review

Abstract

Panel count data arise in many applications when the event history of a recurrent event process is only examined at a sequence of discrete time points. In spite of the recent methodological developments, the availability of their software implementations has been rather limited. Focusing on a practical setting where the effects of some time-independent covariates on the recurrent events are of primary interest, we review semiparametric regression modelling approaches for panel count data that have been implemented in R package spef. The methods are grouped into two categories depending on whether the examination times are associated with the recurrent event process after conditioning on covariates. The reviewed methods are illustrated with a subset of the data from a skin cancer clinical trial.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View