Skip to main content
eScholarship
Open Access Publications from the University of California

Transport properties of functionally graded materials

  • Author(s): Wang, Moran
  • Meng, Fankong
  • Pan, Ning
  • et al.
Abstract

This paper presents a numerical method to predict the effective transport properties of multiphase functionally graded materials, accounting for the effects of random phase distribution and multiphase interactions. Firstly, the multiphase microstructures of such graded materials are reproduced by a random generation-growth algorithm, and then the corresponding transport governing equations are solved using a high-efficiency lattice Boltzmann method. The predicted effective electric and thermal conductivities agree well with the existing experimental data for both two- and three-phase functionally graded materials. Furthermore when the methodology is extended to other transport and even nontransport physical properties of multiphase composites, our simulated results still agree much better with the available experimental data than the existing theoretical models. This may exhibit the robusticity and wider applicability of the present approach. (c) 2007 American Institute of Physics.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View