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LATENT VARIABLES, STATE SPACES, AND MIXINGJAN DE LEEUW, CATRIEN BIJLEVELD, AND FRITS BIJLEVELDAbstract. We argue that many models for multivariate longitu-dinal and cross-sectional data analysis have a common ancestry.They all are based on the qualitative idea that if we knew theactual state of the world, the relations between the observed quan-tities would be truly simple. This is shown to lead directly to factoranalysis, IRT, state space models, mixture densities, latent Markovchains, MIMIC, LISREL, and various other common models andtechnique. It provides a convenient framework for looking at thesemodels.With such a framework often comes a \natural" class of algo-rithms. For the mixture approach to MVA it is the EM algorithm.1. IntroductionOur starting point in this paper is that we want to describe therelationships between (possibly many) variables, and we want to de-scribe this relationship in simple terms. We look for simplicity, notnecessarily because we believe the world is simple, but because simplerelationships are easier to manipulate and communicate.We do not de�ne what we mean by \simplicity", and we do not de�newhat we mean by \variables". This we leave to the philosophers, whoalso have to make a living.For Quetelet, Galton, and the early Karl Pearson, the normal dis-tribution was simple. When Pearson [5] �rst came across non-normalvariation in his biometric work, he tried to maintain this notion of sim-plicity by assuming that the sample came from a mixture of normaldistributions. Thus normality was still the norm, but unfortunatelythe sample was impure, because it consisted of a mixture of types. Ifwe could have separated the types by observation, we would have seenthe normality, but because we couldn't the statistical analysis has todo the job instead. In the same way, the Pearson polychoric model isDate: June 29, 1995.Written while the author was visiting the Universitat Pompeu Fabra, Barcelona,Spain. 1



2 JAN DE LEEUW, CATRIEN BIJLEVELD, AND FRITS BIJLEVELDbased on the notion that the multivariate normal is simple. Unfortu-nately we can only observe discreticized versions of the variables, whichmeans we observe multinormals \mixed" over cell contents.In the same way for Spearman [?], intelligence was simple. It was aconstruct very much like the weight of an object, and the test was likea spring balance. Score on the test was proportional to the \weight"of the subject and to the \resistance" of the test. All other relation-ships between the tests, if they were indeed proper tests of intelligence,were measurement errors, i.e. they were dictated by chance. If weselect a population of persons with a �xed intelligence, then the testswill be perfectly uncorrelated. Correlation between tests is merely aconsequence of the fact that we cannot select such \pure" populations,i.e. it is a consequence of the fact that our populations are of mixedintelligence. If we knew the \state" of the system, i.e. the person'sintelligence, then the correlation would disappear.This very same idea comes back in Lazarsfeld's [?] latent class analy-sis, in a very simple discrete form. It also has dominated item analysis,or item response theory, ever since the work of Lawley [?]. In itemresponse theory the basic assumption is called local independence, andthe relationship between the variables is \explained" by mixing popu-lations with local independence.Factor analysis, latent class analysis, and item response theory are allspecial cases of the analysis of inter-dependence. All variables play thesame symmetric role in the model, we do not measure any input to thesystem, only output. In the analysis of dependence, it is precisely therelationship between input and output variables that we are interestedin, and the model is inherently asymmetric because of this.In classical regression analysis the notion of mixing simple modelsdoes not seem to be very important. Regression analysis works with adi�erent notion of simplicity, mainly because the classical linear modelis a model for a sequence of distributions (one for each cell). Thesimplicity is that all these distributions are the same, except for a cell-speci�c shift.The notion of local independence is applied most naturally in theanalysis of dependence by using MIMIC models. MIMIC models, in-troduced by J�oreskog and Goldberger [?], again revolve the notion of astate, similar to intelligence or ability. Within a given state, input andoutput are independent. Or, to put it di�erently, the state splits inputand output, and all in
uence of the input on the output goes throughthe state. States are unobserved, as usual, and dependence of input onoutput comes about by mixing states.



LATENT VARIABLES, STATE SPACES, AND MIXING 3MIMIC notions are easy to generalize to the longitudinal situation,in which we observe the same input-output system at various points intime. This de�nes a sequence of MIMIC models. Of course replicatinga MIMIC model on independent individuals also leads to a sequence ofMIMIC models, but in that case the models are unconnected, becauseof independence. In the case of temporal variation, we need to connectthe models because of the time-dependence. The basic idea in state-space models, or in linear system analysis, is to link the models throughthe state variables. Not only do the state variables split input andoutput, they also split points in time. Thus all information about thepast is collected in the present state of the system, and if we knewthe present state, our predictions would not be improved by knowingabout the past. Given the present state, we agree with Henry Fordthat \history is bunk".In the next section we will make these notions more precise, but forthe time being it su�ces to observe that J�oreskog and Goldberger'smarriage of factor analysis and regression analysis can be extendedin the time dimension to include state space analysis. In time, wehave linked MIMIC models, and these linked MIMIC models may bestacked on top of each other if we have independent replications. Weare interested in the time evolution of the state, because that sumarizesall the relevant information for prediction, and thus all the relevantdynamics in the system. If state in cross-sectional factor analysis isintelligence, then state in state space models in the same context isdevelopment of intelligence, with similar interpretations for ability.It is of importance to emphasize that in cross-sectional latent vari-able theory, a great deal has been made out of the fact that input,output, and state can all be either discrete or continuous. Regressionof output on state can have many di�erent possible forms because ofthis reason. The basic notion of state, or of latent variables, or ofconditional independence, is not related to the nature of the variousregressions, which should be tailored to the problem at hand.2. State Space ModelsThe basic model we are interested in is drawn in Figure 1. Actuallythere are n such models, one for each individual. We writeprob[(^ni=1 ^Tt=1 yit)(^ni=1 ^Tt=0 zit)(^ni=1 ^Tt=1 xit)]for the probability of observing the data X;Y; and Z: Our basic taskin this section is to derive a general expression for this probability,taking the properties of the model in Figure 1 into account. The keyresult used to translate directed acyclic graphs into statements about



4 JAN DE LEEUW, CATRIEN BIJLEVELD, AND FRITS BIJLEVELD
??&%'$??&%'$ ??&%'$&%'$ ----- � � �zi0 zi1 zi2 zityi1 yi2 yit
xi1 xi2 xit

Figure 1. State Space Model for Individual i.joint distributions is a simple one. We suppose that, given zit, yit isindependent of all other variables in the system. Also, given zi;t�1 andxit; zit is independent of all other variables in the system.We �rst assume individuals are independent. This meansprob[(^ni=1 ^Tt=1 yit)(^ni=1 ^Tt=0 zit)(^ni=1 ^Tt=1 xit)] == nYi=1 prob[(^Tt=1yit)(^Tt=0zit)(^Tt=1xit)]Theorem 2.1.prob[(^Tt=1yit)(^Tt=0zit)(^Tt=1xit)] =prob[^Tt=1xit j zi0]prob[zi0] TYt=1 prob[yit j zit]prob[zit j zi;t�1 ^ xi;t]Proof. The proof is by induction over T: The result is trivially true forT = 1: Assume it is true for T � 1: Start with a simple application of



LATENT VARIABLES, STATE SPACES, AND MIXING 5the de�nition of conditional probability.prob[(^Tt=1yit)(^Tt=0zit)(^Tt=1xit)] =prob[yiT j (^T�1t=1 yit)(^Tt=0zit)(^Tt=1xit)]�prob[ziT j (^T�1t=1 yit)(^T�1t=0 zit)(^Tt=1xit)]�prob[xiT j (^T�1t=1 yit)(^T�1t=0 zit)(^T�1t=1 xit)]�prob[(^T�1t=1 yit)(^T�1t=0 zit)(^T�1t=1 xit)]Figure 1 now tells us thatprob[yiT j (^T�1t=1 yit)(^Tt=0zit)(^Tt=1xit)] = prob[yiT j ziT ];andprob[ziT j (^T�1t=1 yit)(^T�1t=0 zit)(^Tt=1xit)] = prob[ziT j zi;T�1 ^ xi;T ];andprob[xiT j (^T�1t=1 yit)(^T�1t=0 zit)(^T�1t=1 xit)] = prob[xiT j ^T�1t=1 xit ^ zi0]:But this means that we have proved the recursionprob[(^Tt=1yit)(^Tt=0zit)(^Tt=1xit)] =prob[yiT j ziT ]prob[ziT j zi;T�1 ^ xi;T ]prob[xiT j ^T�1t=1 xit ^ zi0]prob[(^T�1t=1 yit)(^T�1t=0 zit)(^T�1t=1 xit)]:By the induction hypothesis this means the result is true for T:We now introduce some simplifying assumptions, which just serve tomake the �nal result easier to write down. If necessary, they can begotten rid of again.Corollary 2.2. If prob[^Tt=1xit j zi0] = prob[^Tt=1xit]and zi0 is a.s. equal to zero, thenprob[^Tt=1yit j ^Tt=1xit] =Z � � � Z zi0;:::;ziT TYt=1 prob[yit j zit]prob[zit j zi;t�1 ^ xi;t]dziT : : : dzi0:Proof. Start with the result in Theorem 2.1. We remove the marginaldistribution of the input variables by conditioning, and then integrateout the state variables.



6 JAN DE LEEUW, CATRIEN BIJLEVELD, AND FRITS BIJLEVELDWe see that the latent variables or state variables serve two purposes.They mediate the e�ect of input on output, and they channel the e�ectof the past on the present. Actually, the state space process is �rst-order Markov, although the observed output process can be much morecomplicated. The �rst-order Markov property is the basic notion ofsimplicity used in this context. It is clear that the state variables, withtheir double function, have to do a lot of work, and consequently thedimensionality of the state space (the \number of factors") may haveto be quite big for a satisfactory �t.3. Specific SubmodelsThere are a number of useful distinctions that can be drawn in dis-cussing this class of models. In the �rst place there are models withand without input. There are models in which the state variables arediscrete, and models in which they are continuous. In some modelsthe input and/or output variables are discrete, in others continuous.There are models which are cross-sectional, in the sense that T = 1;and models which are time-series, in the sense that N = 1: Discussingthe models in these terms shows that they do indeed cover a lot of thelatent variable models discussed in psychometrics and other disciplines.We shall discuss a number of these special cases in a little bit moredetail. What we propose here is a simple and straightforward widen-ing of the framework introduced by Lazarsfeld [?] and Guttman [?]in the forties, and then extended by Anderson [1], McDonald [4], andBartholomew [2] for cross-sectional models, and of the framework dis-cussed, for example, by Metz [?] for time series.As mentioned in the introduction, in the class of cross-sectional mod-els without input we �nd factor analysis (continuous state, continuousoutput), latent class analysis (discrete state, discrete output), latentpro�le analysis (discrete state, continuous output), latent trait anal-ysis (continuous state, discrete output), and of course various combi-nations of these techniques. MIMIC models are cross-sectional withinput, and again we can have discrete/continuous state-space and dis-crete/continuous input/output to describe various MIMIC variations.Classical state space models are usually for the time-series situation,in which N = 1, although this is by no means necessary.If N = 1 the state space model does have far too many parameters,and we need to get statistical stability from additional assumptions.The obvious one is stationarity, which means that the \structural" pa-rameters of the model are constant over time. In this way observingmore time points gives us more information about these parameters,and thus, in the limit, they can be estimated consistently. IfN >> 1 we



LATENT VARIABLES, STATE SPACES, AND MIXING 7can hope to estimate nonstationary models, such as the discrete latentMarkov chains discussed by Van der Pol and De Leeuw [?], or the con-tinuous LISREL-type models discussed by MacCullum and Ashby [?]and Oud [?].There is an elegant device, familiar from the psychometric tradition,but actually starting with Pearson, which makes it possible to gener-ate models with discrete (or truncated, or transformed) output frommodels with continuous output. This can be translated in terms ofsimplicity. We think the continuous models are simple, and we buildmodels for the observed variables on the basis of these simple models.Before we discuss these, we shall look at continuous models in moredetail. 4. Consequences: MomentsModels with continuous variables remain important, because theyare parsimoneous, and because they can be used as stepping stones tocontruct models with continuous latent indicators.The previous formulations of the model were given in terms of thedensity or probability mass function. We now switch to the equivalentformulation in terms of random variables, which we distinguish from�xed quantities by underlining. We use formula (??) to compute theconditional expected value and variance of the output given the input.The natural assumptions in this case are linearity of regression andhomoscedasticity. We look at the equations for a �xed value of i:Moreprecisely, we assume that the conditional expectation of yt given ^ts=1zsand ^ts=1xs only depends linearly on zt: Moreover, the conditional ex-pectation of zt given ^t�1s=1zs and ^ts=1xs only depends on zt�1 and xt:Thus yt = Htzt + �;zt = Ftzt�1 +Gtxt + �t;where �t? ^ts=1 zs;�t? ^ts=1 xs;�t? ^t�1s=1 zs;�t? ^ts=1 xs;and homoscedasticity meansV (�t) = 
t;V (�t) = �t:



8 JAN DE LEEUW, CATRIEN BIJLEVELD, AND FRITS BIJLEVELDThese equations de�ne the discrete linear system, made famous byKalman, who has indicated that the notation in (??) and (??) waschosen to \honor my teacher, F.G.H. Linear." In these classical statespace models it is usually assumed that the matrices Ft; Gt and Ht (andeven 
t and �t) are known from the physics of the problem, and onlythe state variables have to be estimated. For this the Kalman Filter isapplied, which is in this sense a method for computing \factor scores".Lemma 4.1. �t? ^ts=1 �s;�t? ^t�1s=1 �s:Proof. Again we use recursion.Theorem 4.2. Suppose, again to simplify notation, that zi0 is a.s.equal to zero. ThenE (yt j ^Ts=1xs) = t�1Xs=1 HtPtsGsxs;V (yt j ^Ts=1xs) = �t + tXs=1 HtPts
sP 0tsH 0t;while C (yt; yv) = min t;vXs=1 HtPts
sP 0vsH 0v:Proof. We can solve the stochastic di�erence equation (??), and weobtain zt = t�1Xs=1 PtsGsxs + tXs=1 Pts�s;and thus yt = t�1Xs=1 HtPtsGsxs + tXs=1 HtPts�s + �t:where Pts = tYk=s Fk:The Theorem follows directly.



LATENT VARIABLES, STATE SPACES, AND MIXING 95. Latent indicatorsIf our models has discrete output variables, but we have the idea thatthese discrete outcomes are really an imprecisely observed continuousprocess, then we can apply the same ideas as used by Pearson in hispolychoric models. Actually, there are two versions of this idea, whichboth �t rather neatly into the general framework. In the �rst approachwe change to notation somewhat to obtain the modelprob[^Tt=1�it j ^Tt=1xit] =Z � � �Z zi0;:::;ziT TYt=1 prob[�it j zit]prob[zit j zi;t�1 ^ xi;t]dziT : : : dzi0:The blocks yit have been replaced by the blocks �it, which are the un-observed or latent output variables. Suppose block �it has mt variables,indexed by j. We now have to connect the observed with the unob-served output, and this can be done by assuming a transformation orBox-Cox model yijt = Fjt(�ijt; �);where the transformation depends on a number of parameters, collectedin �. We can also assume an additional layer of mixing, as inprob[yit j �it] = mtYj prob[yijt j �ijt];If we assume, in the Box-Cox approach, that the transformation is adi�erentiable strictly monotone function for each �; thenprob[^Tt=1yit j ^Tt=1xit] = prob[^Tt=1�it j ^Tt=1xit] TYt=1 mtYj �����@F�1jt (�; �)@yijt �����On the other hand, if we assume that Fjt(�; �) is a step-function, map-ping the real line into f1; � � � ; kg, thenprob[^Tt=1yit j ^Tt=1xit] = ZBi(�) prob[^Tt=1�it j ^Tt=1xit] TYt=1 d�it;where Bi(�) = 
Tt=1 
mtj=1 F�1jt (yijt; �):



10 JAN DE LEEUW, CATRIEN BIJLEVELD, AND FRITS BIJLEVELDIn the mixing approach we �nd simplyprob[^Tt=1yit j ^Tt=1xit] =Z � � � Z f�ijtg TYt=1 mtYj=1 prob[yijt j �ijt]prob[^Tt=1^mtj=1�ijt j ^Tt=1xit] TYt=1 mtYj=1 d�ijt:y6. The EM algorithmOften a su�ciently general framework, which encompasses a lot ofdi�erent techniques, comes with a \natural" class of algorithms. Thesealgorithms may not always be optimal for any particular special case,but they are usually of a simple structure, and they are guaranteedto be available for any model in the class. For the ALSOS approachto multivariate analysis [?], these were the Alternating Least Squaresalgorithms, and for the mixing or latent variable approach in this paperthis is the Expectation/Maximization or EM method, presented �rstby Dempster, Laird, and Rubin [3].For a discussion of the EM algorithm as a special type of majoriza-tion algorithm, with majorization provided by Jensen's inequality, werefer to De Leeuw [?]. For our purposes we merely point out that EMalgorithms maximize functions of the formg(�) �= log Z f(x; �)dxby solving a sequence of maximization problems. The function maxi-mized in step k ish(�; �(k)) �=Z f(x j �(k)) log f(x; �)dx;where f(x j �(k)) �= f(x; �(k))R f(z; �(k))dz :Theorem 6.1. In a step of the EM algorithm we maximize, if thecurrent set of parameters is �, the following function of �:TXt=1 Zzit prob�(z j x ^ y) log prob�[yit j zit]dzit +TXt=1 Zzit Zzi;t�1 prob�(z j x ^ y) log prob�[zit j zi;t�1 ^ xit]dzitdzi;t�1



LATENT VARIABLES, STATE SPACES, AND MIXING 11where prob�(z j x ^ y) �= prob�(^Tt=1zit j [^Tt=1xit] ^ [^Tt=1yit])Proof. This is just a matter of substituting the state space model inthe majorization function, and simplifying.It is obvious from the Theorem that the simpli�cations resulting frommajorization will be especially impressive in the case of exponentialfamilies, where the logarithm inside the integral sign reduces computingthe integral to computing the expected value of a su�cient statistic.Using the general principles of EM algorithm construction, it is alsopossible to construct methods to optimize the likelihood functions forthe models in the previous section. This is true for the ones using theBox-Cox approach, and for the ones with use additional mixing.7. The Causal Structure of Latent Variable ModelsThere is much recent research dealing with modeling the dependencestructure of variables by using graphs. The interesting part of this re-search is to do the modeling in such a way that the structural propertiesof graphs, such as connectivity and separation, are isomorphic with thedependence structure of the variables. This is often called \causal mod-eling", a description which is unnecessarily controversial. Models are�lters, or smoothers, which can be used to bring data in a form whichis more interesting, more easy to communicate, or more easy to relateto existing theory. We separate the signal from the noise by using priortheory whenever it is available, and by using inductive techniques oth-erwise. We can talk about our results in causal language, as long as werealize that this language is simply another (verbal) model with whichwe overlay the statistical analysis. Verbal models are vague, and leadto many possible misconceptions.The so-called causal models have also been used, mainly in the so-cial and behavioural sciences, to dress up weak data. Using causalterminology suggest an invariance which simply is not there in thesecases, because the outcomes depend largely on accidental properties ofthe data and arbitrary choices of the researcher. This has given causalmodels a bad name, although obviously the problem is not with themodel but with the data and the way the model is applied to the data(and perhaps the way the techniques have been sold commercially).Thus there are many reasons to distrust highly speci�c path modelsin which some of the arrows between variables are present, and some ofthe other comparable arrows are absent, and there are no clear reasonsfor either presence or absence. We prefer full models, in which the



12 JAN DE LEEUW, CATRIEN BIJLEVELD, AND FRITS BIJLEVELDdependence that is modeled depends on some global and fairly uncon-troversial choices. Exploratory factor analysis is one example, multipleregression is another. All the arrows are there between the predictorsand the criterium, or between the factors and the indicators. Such fullmodels are much more descriptive than the models whose �ne struc-ture suggests much more prior knowledge than we actually have. Theycan be used as data reduction techniques, and in fact in most casesthey are not far from saturated models. Multiple regression and com-plete recursive path models are saturated, factor analysis and the statespace models we discuss here can be made saturated by introducingsu�ciently many latent variables.The choices we have to make to draw our path models or graphs orarrow diagrams are really simple. In multiple regression we only haveto choose which variable is the criterion, in factor analysis we only haveto choose the number of factors, in MIMIC type models we have to dis-tinguish input and output variables and choose the number of factors,and in linear dynamic systems we have to order the blocks of input,state, and output variables in time. These are simple global choices,with which few people will disagree. The �ltering done by the modelis entirely in the dimensionality of the state space or factor space, andwe easily see the e�ect of this by looking at di�erent dimensionalities.
References1. T. W. Andersen, Some scaling models and estimation procedures in the latentclass model, Probability and Statistics. The Harald Cram�er Volume. (Stockholm,Sweden) (U. Grenander, ed.), Almqvist and Wicksell, Stockholm, Sweden, 1959.2. D. J. Bartholomew, Latent variable models and factor analysis, Gri�n, London,GB, 1987.3. A. P. Dempster, N. M. Liard, and D. B. Rubin, Maximum likelihood from in-complete data via the em algorithm, Journal of the Royal Statistical Society B(1977), no. 34, 183{202.4. R. P. McDonald, A note on the derivation of the general latent class model,Psychometrika 27 (1962), 203{206.5. K. Pearson, Contribution to the mathematical theory of evolution., PhilosophicalTransactions of the Royal Statistical Society of London A (1894), no. 185, 71{110.
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