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LATENT VARIABLES, STATE SPACES, AND MIXING
JAN DE LEEUW, CATRIEN BIJLEVELD, AND FRITS BILJLEVELD

ABSTRACT. We argue that many models for multivariate longitu-
dinal and cross-sectional data analysis have a common ancestry.
They all are based on the qualitative idea that if we knew the
actual state of the world, the relations between the observed quan-
tities would be truly simple. This is shown to lead directly to factor
analysis, IRT, state space models, mixture densities, latent Markov
chains, MIMIC, LISREL, and various other common models and
technique. It provides a convenient framework for looking at these
models.

With such a framework often comes a “natural” class of algo-
rithms. For the mixture approach to MVA it is the EM algorithm.

1. INTRODUCTION

Our starting point in this paper is that we want to describe the
relationships between (possibly many) variables, and we want to de-
scribe this relationship in simple terms. We look for simplicity, not
necessarily because we believe the world is simple, but because simple
relationships are easier to manipulate and communicate.

We do not define what we mean by “simplicity”, and we do not define
what we mean by “variables”. This we leave to the philosophers, who
also have to make a living.

For Quetelet, Galton, and the early Karl Pearson, the normal dis-
tribution was simple. When Pearson [5] first came across non-normal
variation in his biometric work, he tried to maintain this notion of sim-
plicity by assuming that the sample came from a mizture of normal
distributions. Thus normality was still the norm, but unfortunately
the sample was impure, because it consisted of a mixture of types. If
we could have separated the types by observation, we would have seen
the normality, but because we couldn’t the statistical analysis has to
do the job instead. In the same way, the Pearson polychoric model is
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based on the notion that the multivariate normal is simple. Unfortu-
nately we can only observe discreticized versions of the variables, which
means we observe multinormals “mixed” over cell contents.

In the same way for Spearman [?], intelligence was simple. It was a
construct very much like the weight of an object, and the test was like
a spring balance. Score on the test was proportional to the “weight”
of the subject and to the “resistance” of the test. All other relation-
ships between the tests, if they were indeed proper tests of intelligence,
were measurement errors, i.e. they were dictated by chance. If we
select a population of persons with a fixed intelligence, then the tests
will be perfectly uncorrelated. Correlation between tests is merely a
consequence of the fact that we cannot select such “pure” populations,
i.e. it is a consequence of the fact that our populations are of mixed
intelligence. If we knew the “state” of the system, i.e. the person’s
intelligence, then the correlation would disappear.

This very same idea comes back in Lazarsfeld’s [?] latent class analy-
sis, in a very simple discrete form. It also has dominated item analysis,
or item response theory, ever since the work of Lawley [?]. In item
response theory the basic assumption is called local independence, and
the relationship between the variables is “explained” by mixing popu-
lations with local independence.

Factor analysis, latent class analysis, and item response theory are all
special cases of the analysis of inter-dependence. All variables play the
same symmetric role in the model, we do not measure any input to the
system, only output. In the analysis of dependence, it is precisely the
relationship between input and output variables that we are interested
in, and the model is inherently asymmetric because of this.

In classical regression analysis the notion of mixing simple models
does not seem to be very important. Regression analysis works with a
different notion of simplicity, mainly because the classical linear model
is a model for a sequence of distributions (one for each cell). The
simplicity is that all these distributions are the same, except for a cell-
specific shift.

The notion of local independence is applied most naturally in the
analysis of dependence by using MIMIC models. MIMIC models, in-
troduced by Joreskog and Goldberger [?], again revolve the notion of a
state, similar to intelligence or ability. Within a given state, input and
output are independent. Or, to put it differently, the state splits input
and output, and all influence of the input on the output goes through
the state. States are unobserved, as usual, and dependence of input on
output comes about by mixing states.
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MIMIC notions are easy to generalize to the longitudinal situation,
in which we observe the same input-output system at various points in
time. This defines a sequence of MIMIC models. Of course replicating
a MIMIC model on independent individuals also leads to a sequence of
MIMIC models, but in that case the models are unconnected, because
of independence. In the case of temporal variation, we need to connect
the models because of the time-dependence. The basic idea in state-
space models, or in linear system analysis, is to link the models through
the state variables. Not only do the state variables split input and
output, they also split points in time. Thus all information about the
past is collected in the present state of the system, and if we knew
the present state, our predictions would not be improved by knowing
about the past. Given the present state, we agree with Henry Ford
that “history is bunk”.

In the next section we will make these notions more precise, but for
the time being it suffices to observe that Joreskog and Goldberger’s
marriage of factor analysis and regression analysis can be extended
in the time dimension to include state space analysis. In time, we
have linked MIMIC models, and these linked MIMIC models may be
stacked on top of each other if we have independent replications. We
are interested in the time evolution of the state, because that sumarizes
all the relevant information for prediction, and thus all the relevant
dynamics in the system. If state in cross-sectional factor analysis is
intelligence, then state in state space models in the same context is
development of intelligence, with similar interpretations for ability.

It is of importance to emphasize that in cross-sectional latent vari-
able theory, a great deal has been made out of the fact that input,
output, and state can all be either discrete or continuous. Regression
of output on state can have many different possible forms because of
this reason. The basic notion of state, or of latent variables, or of
conditional independence, is not related to the nature of the various
regressions, which should be tailored to the problem at hand.

2. STATE SPACE MODELS

The basic model we are interested in is drawn in Figure 1. Actually
there are n such models, one for each individual. We write

pI’Ob[(/\?:l /\?Zl yit)(/\?ZI /\?:0 Zit)(/\?ZI /\?Zl xlt)]

for the probability of observing the data X,Y, and Z. Our basic task
in this section is to derive a general expression for this probability,
taking the properties of the model in Figure 1 into account. The key
result used to translate directed acyclic graphs into statements about



4 JAN DE LEEUW, CATRIEN BIJLEVELD, AND FRITS BIJLEVELD

i1 X2 Tt
Y Yi2 Yt

FIGURE 1. State Space Model for Individual 1.

joint distributions is a simple one. We suppose that, given z;, y;; s
independent of all other variables in the system. Also, given z;,_; and
X4, Zi¢ 1s independent of all other variables in the system.

We first assume individuals are independent. This means

pI’Ob[(/\?:l /\?:1 yit)(/\?ZI /\?ZO Zit)(/\?ZI /\?:1 xlt)] =

= H PI’Ob[(/\thlyit)(/\tT:OZit)(/\tT:ﬂit)]
=1

Theorem 2.1.

pmb[(/\tT:1yit)(/\tT:OZit)(/\thlxit)] =
T

prob[AL_ i | zio] problzi) Hp?“Ob[yit | zit]problzit | ziz—1 N 4]
t=1

Proof. The proof is by induction over T. The result is trivially true for
T = 1. Assume it is true for 7' — 1. Start with a simple application of
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the definition of conditional probability.

prob[(A— 1yzt)(/\tT ozzt)(/\tT 1)) =
problyir | (AL yie) (NZozio) (Aimywic)] x
problzir | (N i) (A=t zi) (AN ie)] %
problair | (A yi) (A2 olZzt)(/\tT [ wi)] X
PI’Ob[( =1 yit)(/\tholzit)(/\tT:?xit)]
Figure 1 now tells us that
problyir | ( t=1 yzt)(/\tT:OZit)(/\tT:ﬂit)] = problyir | zir],

and

probzir | (A7 yie) (N zie) (N @i)] = probleir | zir-1 A 2 1],

and

problzir | (AN yi) (NS 2 (A 2a)] = problair | AL @i A zi).-

But this means that we have proved the recursion

PI’Ob[(/\thlyit)(/\tT:OZit)(/\tT:ﬂit)] =
probly.r | zir]problzir | zir—1 A ; 7]problxr | /\tT:_llxﬁ A Zio
probl(AL i) (Ao zie) (AN i)
By the induction hypothesis this means the result is true for 7. O

We now introduce some simplifying assumptions, which just serve to
make the final result easier to write down. If necessary, they can be
gotten rid of again.

Corollary 2.2. If
prob[/\thlxﬁ | zio] = prob[/\thlxﬁ]

and z,, 15 a.s. equal to zero, then

pmb[/\tT 1Yit | /\tT 1xit] =

/ / Hprob Yir | zit] problzi | zig—1 N xidldzir . dzo.

2109+ T =1

Proof. Start with the result in Theorem 2.1. We remove the marginal
distribution of the input variables by conditioning, and then integrate
out the state variables. O
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We see that the latent variables or state variables serve two purposes.
They mediate the effect of input on output, and they channel the effect
of the past on the present. Actually, the state space process is first-
order Markov, although the observed output process can be much more
complicated. The first-order Markov property is the basic notion of
simplicity used in this context. It is clear that the state variables, with
their double function, have to do a lot of work, and consequently the
dimensionality of the state space (the “number of factors”) may have
to be quite big for a satisfactory fit.

3. SPECIFIC SUBMODELS

There are a number of useful distinctions that can be drawn in dis-
cussing this class of models. In the first place there are models with
and without input. There are models in which the state variables are
discrete, and models in which they are continuous. In some models
the input and/or output variables are discrete, in others continuous.
There are models which are cross-sectional, in the sense that 1" = 1,
and models which are time-series, in the sense that N = 1. Discussing
the models in these terms shows that they do indeed cover a lot of the
latent variable models discussed in psychometrics and other disciplines.

We shall discuss a number of these special cases in a little bit more
detail. What we propose here is a simple and straightforward widen-
ing of the framework introduced by Lazarsfeld [?] and Guttman [?]
in the forties, and then extended by Anderson [1], McDonald [4], and
Bartholomew [2] for cross-sectional models, and of the framework dis-
cussed, for example, by Metz [?] for time series.

As mentioned in the introduction, in the class of cross-sectional mod-
els without input we find factor analysis (continuous state, continuous
output), latent class analysis (discrete state, discrete output), latent
profile analysis (discrete state, continuous output), latent trait anal-
ysis (continuous state, discrete output), and of course various combi-
nations of these techniques. MIMIC models are cross-sectional with
input, and again we can have discrete/continuous state-space and dis-
crete/continuous input/output to describe various MIMIC variations.
Classical state space models are usually for the time-series situation,
in which N = 1, although this is by no means necessary.

If N =1 the state space model does have far too many parameters,
and we need to get statistical stability from additional assumptions.
The obvious one is stationarity, which means that the “structural” pa-
rameters of the model are constant over time. In this way observing
more time points gives us more information about these parameters,
and thus, in the limit, they can be estimated consistently. If N >> 1 we
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can hope to estimate nonstationary models, such as the discrete latent
Markov chains discussed by Van der Pol and De Leeuw [?], or the con-
tinuous LISREL-type models discussed by MacCullum and Ashby [?]
and Oud [?].

There is an elegant device, familiar from the psychometric tradition,
but actually starting with Pearson, which makes it possible to gener-
ate models with discrete (or truncated, or transformed) output from
models with continuous output. This can be translated in terms of
simplicity. We think the continuous models are simple, and we build
models for the observed variables on the basis of these simple models.
Before we discuss these, we shall look at continuous models in more
detail.

4. CONSEQUENCES: MOMENTS

Models with continuous variables remain important, because they
are parsimoneous, and because they can be used as stepping stones to
contruct models with continuous latent indicators.

The previous formulations of the model were given in terms of the
density or probability mass function. We now switch to the equivalent
formulation in terms of random variables, which we distinguish from
fixed quantities by underlining. We use formula (??) to compute the
conditional expected value and variance of the output given the input.
The natural assumptions in this case are linearity of regression and
homoscedasticity. We look at the equations for a fixed value of . More
precisely, we assume that the conditional expectation of y, given N_ z,
and Al_;z, only depends linearly on z,. Moreover, the conditional ex-
pectation of z, given A’Z}z, and A'_ z, only depends on z, ; and z,.

Thus

y, = Hez, + 0,
2z, = Pz, + Gz, + ¢,
where
8,— /\2:1 Zs
8,— /\2:1 L,

-1
&= /\521 Zs
e— N_, x
=t s=1 Zs»
and homoscedasticity means

v (ét) = Qtv
V(¢) = 0.
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These equations define the discrete linear system, made famous by
Kalman, who has indicated that the notation in (??) and (??) was
chosen to “honor my teacher, F.G.H. Linear.” In these classical state
space models it is usually assumed that the matrices F}, Gy and H; (and
even (), and 0,) are known from the physics of the problem, and only
the state variables have to be estimated. For this the Kalman Filter is
applied, which is in this sense a method for computing “factor scores”.

Lemma 4.1.
t
ét_ /\521 Ess
t—1
G /\521 Es-
Proof. Again we use recursion. O

Theorem 4.2. Suppose, again to simplify notation, that z,, is a.s.
equal to zero. Then

t—1

E (Qt | /\Zzlis) = Z H PG,

s=1

t
Vi(y, | Aoz,) =0, + Z Hy Py QP 1,

s=1

while
min ¢,v

Cly,y,)= Y HP.QP,H,.
s=1

Proof. We can solve the stochastic difference equation (?7), and we
obtain

t—1 t
Zt - E PtsGs£5 —I' E Pts§57
s=1 s=1

and thus
i—1 ¢

gt = Z HtPtsGsis + Z HtPts§5 + ét-

s=1 s=1

where

t
P, = H F.
k=s

The Theorem follows directly. O
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5. LATENT INDICATORS

If our models has discrete output variables, but we have the idea that
these discrete outcomes are really an imprecisely observed continuous
process, then we can apply the same ideas as used by Pearson in his
polychoric models. Actually, there are two versions of this idea, which
both fit rather neatly into the general framework. In the first approach
we change to notation somewhat to obtain the model

prob[ t=1"lt | /\t 1:1}”5] =

/ . / H prob[mt | zit]prob[zﬁ | Zi,t—l A wi,t]dZiT . dZio.

210502 T =1

The blocks y;; have been replaced by the blocks n;;, which are the un-
observed or latent output variables. Suppose block n;; has m; variables,
indexed by 7. We now have to connect the observed with the unob-
served output, and this can be done by assuming a transformation or

Boz-Cox model
Yijt = Fiu(nije, A),

where the transformation depends on a number of parameters, collected
in A. We can also assume an additional layer of mixing, as in

prob[yﬁ | 772'7:] = HPTOb[yijt | 772']‘75]7

J
If we assume, in the Box-Cox approach, that the transformation is a
differentiable strictly monotone function for each A, then

T mt

prob[ 1=1Yit | /\t 1T = prob[ 1=17it | /\t 12t HH
t=1 j

aymt

On the other hand, if we assume that F;(e, \) is a step-function, map-
ping the real line into {1,--- ,k}, then

T
prob[ AL,y | AL, ] = / probAL i | ALy [ de
B,‘(/\) =1
where

B; ()‘) ®t 1 ®Mt F (ywtv)‘)
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In the mixing approach we find simply

PI’Ob t 1Yit | /\t 151/'275] =

T my T my
[+ TITTweobloss Lsdorob{nin e | ALy T T e
{nijt} t=1 j=1 t=1 j=1

6. THE EM ALGORITHM

Often a sufficiently general framework, which encompasses a lot of
different techniques, comes with a “natural” class of algorithms. These
algorithms may not always be optimal for any particular special case,
but they are usually of a simple structure, and they are guaranteed
to be available for any model in the class. For the ALSOS approach
to multivariate analysis [?], these were the Alternating Least Squares
algorithms, and for the mixing or latent variable approach in this paper
this is the Fapectation/Mazimization or EM method, presented first
by Dempster, Laird, and Rubin [3].

For a discussion of the EM algorithm as a special type of majoriza-
tion algorithm, with majorization provided by Jensen’s inequality, we
refer to De Leeuw [?]. For our purposes we merely point out that EM
algorithms maximize functions of the form

) élog/f(x,e)dx

by solving a sequence of maximization problems. The function maxi-
mized in step k is

0,092 [ (o |09} 1og (2. 0)da

where

Theorem 6.1. In a step of the EM algorithm we maximize, if the
current set of parameters is &, the following function of 0:

T
Z/ probe(z | @ A y)log proby[yir | zi]dzi +

Z/ / probe(z | « Ay)log probylzit | ziz—1 N @it|dziedz; 11
Zit—1
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where
A
probe(z | @ Ay) = probe(A_yzie | [N—yza] A [N i)

Proof. This is just a matter of substituting the state space model in
the majorization function, and simplifying. O

It is obvious from the Theorem that the simplifications resulting from
majorization will be especially impressive in the case of exponential
families, where the logarithm inside the integral sign reduces computing
the integral to computing the expected value of a sufficient statistic.
Using the general principles of EM algorithm construction, it is also
possible to construct methods to optimize the likelihood functions for
the models in the previous section. This is true for the ones using the
Box-Cox approach, and for the ones with use additional mixing.

7. THE CAUSAL STRUCTURE OF LATENT VARIABLE MODELS

There is much recent research dealing with modeling the dependence
structure of variables by using graphs. The interesting part of this re-
search is to do the modeling in such a way that the structural properties
of graphs, such as connectivity and separation, are isomorphic with the
dependence structure of the variables. This is often called “causal mod-
eling”, a description which is unnecessarily controversial. Models are
filters, or smoothers, which can be used to bring data in a form which
is more interesting, more easy to communicate, or more easy to relate
to existing theory. We separate the signal from the noise by using prior
theory whenever it is available, and by using inductive techniques oth-
erwise. We can talk about our results in causal language, as long as we
realize that this language is simply another (verbal) model with which
we overlay the statistical analysis. Verbal models are vague, and lead
to many possible misconceptions.

The so-called causal models have also been used, mainly in the so-
cial and behavioural sciences, to dress up weak data. Using causal
terminology suggest an invariance which simply is not there in these
cases, because the outcomes depend largely on accidental properties of
the data and arbitrary choices of the researcher. This has given causal
models a bad name, although obviously the problem is not with the
model but with the data and the way the model is applied to the data
(and perhaps the way the techniques have been sold commercially).

Thus there are many reasons to distrust highly specific path models
in which some of the arrows between variables are present, and some of
the other comparable arrows are absent, and there are no clear reasons
for either presence or absence. We prefer full models, in which the
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dependence that is modeled depends on some global and fairly uncon-
troversial choices. Exploratory factor analysis is one example, multiple
regression is another. All the arrows are there between the predictors
and the criterium, or between the factors and the indicators. Such full
models are much more descriptive than the models whose fine struc-
ture suggests much more prior knowledge than we actually have. They
can be used as data reduction techniques, and in fact in most cases
they are not far from saturated models. Multiple regression and com-
plete recursive path models are saturated, factor analysis and the state
space models we discuss here can be made saturated by introducing
sufficiently many latent variables.

The choices we have to make to draw our path models or graphs or
arrow diagrams are really simple. In multiple regression we only have
to choose which variable is the criterion, in factor analysis we only have
to choose the number of factors, in MIMIC type models we have to dis-
tinguish input and output variables and choose the number of factors,
and in linear dynamic systems we have to order the blocks of input,
state, and output variables in time. These are simple global choices,
with which few people will disagree. The filtering done by the model
is entirely in the dimensionality of the state space or factor space, and
we easily see the effect of this by looking at different dimensionalities.
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