Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Hyaluronan-CD44 interaction promotes microRNA signaling and RhoGTPase activation leading to tumor progression

Abstract

A hallmark of all solid tumor malignancies is the ability to invade the surrounding tissue and/or metastasize to distant sites. Tumors cells have altered signaling pathways which that to cytoskeleton activation and migration. Myriad studies have attempted to identify specific adhesion molecule(s) expressed in solid tumor cells that correlate with tumor cell migrative and invasive behaviors. Among such candidate molecules is hyaluronan (HA), the major glycosaminoglycan component of extracellular matrix (ECM). HA serves not only as a primary constituent of connective tissue extracellular matrices but also functions as a bio-regulatory molecule. Pertinently, HA is enriched in many types of tumors. HA is capable of binding to CD44 which is a ubiquitous, abundant and functionally important receptor expressed on the surface of many normal cells and tumor cells. Several lines of evidence indicate that CD44 selects its unique downstream effectors and coordinates downstream, intracellular signaling pathways that influence multiple cellular functions. Certain microRNAs [(miRNAs), small RNA molecules with ~20-25 nucleotides] have been shown to play roles in regulating tumor cell migration, invasion, survival and chemotherapy resistance. In this article, a special focus is placed on the role of HA-mediated CD44 interaction with unique signaling molecules in activating intracellular miRNA-signaling and RhoGTPase functions leading to the concomitant onset of tumor cell activities (e.g., tumor cell migration, invasion, survival and chemoresistance) and tumor progression. This new knowledge could serve as groundwork for the future development of new drug targets to inhibit HA/CD44-mediated oncogenic signaling and cancer progression.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View