Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Vorasidenib, a Dual Inhibitor of Mutant IDH1/2, in Recurrent or Progressive Glioma; Results of a First-in-Human Phase I TrialVorasidenib in Recurrent or Progressive Glioma

Abstract

Purpose

Lower grade gliomas (LGGs) are malignant brain tumors. Current therapy is associated with short- and long-term toxicity. Progression to higher tumor grade is associated with contrast enhancement on MRI. The majority of LGGs harbor mutations in the genes encoding isocitrate dehydrogenase 1 or 2 (IDH1/IDH2). Vorasidenib (AG-881) is a first-in-class, brain-penetrant, dual inhibitor of the mutant IDH1 and mutant IDH2 enzymes.

Patients and methods

We conducted a multicenter, open-label, phase I, dose-escalation study of vorasidenib in 93 patients with mutant IDH1/2 (mIDH1/2) solid tumors, including 52 patients with glioma that had recurred or progressed following standard therapy. Vorasidenib was administered orally, once daily, in 28-day cycles until progression or unacceptable toxicity. Enrollment is complete; this trial is registered with ClinicalTrials.gov, NCT02481154.

Results

Vorasidenib showed a favorable safety profile in the glioma cohort. Dose-limiting toxicities of elevated transaminases occurred at doses ≥100 mg and were reversible. The protocol-defined objective response rate per Response Assessment in Neuro-Oncology criteria for LGG in patients with nonenhancing glioma was 18% (one partial response, three minor responses). The median progression-free survival was 36.8 months [95% confidence interval (CI), 11.2-40.8] for patients with nonenhancing glioma and 3.6 months (95% CI, 1.8-6.5) for patients with enhancing glioma. Exploratory evaluation of tumor volumes in patients with nonenhancing glioma showed sustained tumor shrinkage in multiple patients.

Conclusions

Vorasidenib was well tolerated and showed preliminary antitumor activity in patients with recurrent or progressive nonenhancing mIDH LGG.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View