Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Layer-by-Layer Freezing of Nanoconfined Water

Abstract

Nanoconfined water plays a pivotal role in a vast number of fields ranging from biological and materials sciences to catalysis, nanofluidics and geochemistry. Here, we report the freezing and melting behavior of water (D2O) nanoconfined in architected silica-based matrices including Vycor glass and mesoporous silica SBA-15 and SBA-16 with pore diameters ranging between 4-15 nm, which are investigated using differential scanning calorimetry and 2H nuclear magnetic resonance spectroscopy. The results provide compelling evidence that the extreme dynamical heterogeneity of water molecules is preserved over distances as small as a few angstroms. Solidification progresses in a layer-by-layer fashion with a coexistence of liquid-like and solid-like dynamical fraction at all temperatures during the transition process. The previously reported fragile-to-strong dynamic transition in nanoconfined water is argued to be a direct consequence of the layer-by-layer solidification.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View