- Main
Effects of correlated input and electrical coupling on synchrony in fast-spiking cell networks
Published Web Location
https://doi.org/10.1016/j.neucom.2005.12.058Abstract
Fast-spiking (FS) cells in layer IV of the somatosensory cortex receive direct thalamocortical (TC) input and provide feed-forward inhibition onto layer IV excitatory cells. The level of synchronous firing of FS cells will affect the shape of this feed-forward output. Two factors that contribute to the synchrony are correlated TC input and electrical coupling between FS cells. Using a cell-pair model, we show that these two factors act synergistically to increase synchrony, and we examine the underlying mechanism. © 2006 Elsevier B.V. All rights reserved.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-