Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Causality detection in cortical seizure dynamics using cross-dynamical delay differential analysis.

Published Web Location

https://doi.org/10.1063/1.5126125
Abstract

Most natural systems, including the brain, are highly nonlinear and complex, and determining information flow among the components that make up these dynamic systems is challenging. One such example is identifying abnormal causal interactions among different brain areas that give rise to epileptic activities. Here, we introduce cross-dynamical delay differential analysis, an extension of delay differential analysis, as a tool to establish causal relationships from time series signals. Our method can infer causality from short time series signals as well as in the presence of noise. Furthermore, we can determine the onset of generalized synchronization directly from time series data, without having to consult the underlying equations. We first validate our method on simulated datasets from coupled dynamical systems and apply the method to intracranial electroencephalography data obtained from epilepsy patients to better characterize large-scale information flow during epilepsy.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.