- Main
Magnetic Iron Oxide Nanoparticles and a Polydiacetylene Coating to Create a Biocompatible and Stable Molecule for Use in Cancer Diagnostics and Early detection in Molecular Medicine
- Bhatnagar, Shweta
- Advisor(s): Haun, Jered
Abstract
Earlier cancer detection and diagnosis is essential to prevent cancer mortality in nanomedicine and nanotechnology. Fluorescence and magnetic signals provide a way for earlier detection through imaging systems. Magnetic iron oxide nanoparticles have a superparamagnetism feature that allows them to act as contrast agents that can be detected through a magnetic resonance imaging system. These iron oxide cores have a polymer coating around them to provide stability, prevent aggregation, and allow for biocompatibility within the body. In addition, these functional coatings can have ligands and peptides for detection and therapy purposes. One functional coating is a polydiacetylene coating due to its chromatic and optical properties. When polymerized, it has the ability to change color in the visible spectrum to blue (not a fluorescent signal) and when heated, it changes to a red color (fluorescent signal). This way a strong and stable layer is formed around the iron oxide cores. These coatings are placed on the iron cores using a modified dual solvent exchange method, in which DMSO is slowly replaced by water without the use of organic solvents previous used. In addition, these nanoparticles can then be PEGylated, which provides a more stable and water soluble compound in aqueous solutions. Measurements can be taken through dynamic light scattering for size distributions and zeta potential and the Nanodrop for absorbance. Ideal sizes are about 30 nm for MNPs. Moreover, for future directions, there can be more molecules attached to the coated layers to use for molecular detection and analysis.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-