Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Rate-Dependent Stiffness and Recovery in Interpenetrating Network Hydrogels through Sacrificial Metal Coordination Bonds

Abstract

Four-arm poly(ethylene glycol) (PEG) star polymers modified with 3-hydroxy-4-pyridinone (HOPO) end groups were shown to form transient, coordination networks upon addition of trivalent cations In3+, Fe3+, and Al3+. These coordination-based hydrogels exhibited high activation energies of viscoelasticity (34 kT) and characteristic bond lifetimes tunable over 2 orders of magnitude and could be incorporated into poly(hydroxyethylacrylamide)-based covalent scaffolds to create interpenetrating network hydrogels. Measurements carried out in compression and tension demonstrate that the secondary coordination network imparts toughness and stiffness to the overall material, and unlike traditional interpenetrating networks (IPNs), the extent of toughening is dependent on the rate at which the materials are deformed. The dynamic character of the coordination network also allows recovery after mechanical damage following high amplitude strains.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View