- Main
Hydrogenation of CO2 to Methanol on CeO x /Cu(111) and ZnO/Cu(111) Catalysts: Role of the Metal–Oxide Interface and Importance of Ce3+ Sites
Published Web Location
https://doi.org/10.1021/acs.jpcc.5b12012Abstract
The role of the interface between a metal and oxide (CeOx-Cu and ZnO-Cu) is critical to the production of methanol through the hydrogenation of CO2 (CO2 + 3H2 → CH3OH + H2O). The deposition of nanoparticles of CeOx or ZnO on Cu(111),oxi < 0.3 monolayer, produces highly active catalysts for methanol synthesis. The catalytic activity of these systems increases in the sequence: Cu(111) < ZnO/Cu(111) < CeOx/Cu(111). The apparent activation energy for the CO2 → CH3OH conversion decreases from 25 kcal/mol on Cu(111) to 16 kcal/mol on ZnO/Cu(111) and 13 kcal/mol on CeOx/Cu(111). The surface chemistry of the highly active CeOx-Cu(111) interface was investigated using ambient pressure X-ray photoemission spectroscopy (AP-XPS) and infrared reflection absorption spectroscopy (AP-IRRAS). Both techniques point to the formation of formates (HCOO-) and carboxylates (CO2δ-) during the reaction. Our results show an active state of the catalyst rich in Ce3+ sites which stabilize a CO2δ- species that is an essential intermediate for the production of methanol. The inverse oxide/metal configuration favors strong metal-oxide interactions and makes possible reaction channels not seen in conventional metal/oxide catalysts.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-