Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Enhanced anti-tumor immune responses and delay of tumor development in human epidermal growth factor receptor 2 mice immunized with an immunostimulatory peptide in poly(D,L-lactic-co-glycolic) acid nanoparticles

Abstract

Introduction

Cancer vaccines have the potential to induce curative anti-tumor immune responses and better adjuvants may improve vaccine efficacy. We have previously shown that Hp91, a peptide derived from the B box domain in high-mobility group box protein 1 (HMGB1), acts as a potent immune adjuvant.

Method

In this study, Hp91 was tested as part of a therapeutic vaccine against human epidermal growth factor receptor 2 (HER2)-positive breast cancer.

Results

Free peptide did not significantly augment immune responses but, when delivered in poly(D,L-lactic-co-glycolic) acid nanoparticles (PLGA-NPs), robust activation of dendritic cells (DCs) and increased activation of HER2-specific T cells was observed in vitro. Vaccination of HER2/neu transgenic mice, a mouse breast cancer model that closely mimics the immune modulation and tolerance in some breast cancer patients, with Hp91-loaded PLGA-NPs enhanced the activation of HER2-specific cytotoxic T lymphocyte (CTL) responses, delayed tumor development, and prolonged survival.

Conclusions

Taken together these findings demonstrate that the delivery of the immunostimulatory peptide Hp91 inside PLGA-NPs enhances the potency of the peptide and efficacy of a breast cancer vaccine.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View