Skip to main content
eScholarship
Open Access Publications from the University of California

Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts

Abstract

Structure–activity relationship (SAR) is the key problem of nanoscience, thus to fabricate novel and well-defined nanostructure will provide a new insight on catalyst preparation method. Highly active and low cost electrocatalysts for oxygen evolution reaction (OER) are of great importance for future renewable energy conversion and storage. Herein, NiFe-based layered double hydroxides with laminar structure (NFLS) were successfully fabricated via a one-step hydrothermal approach by using sodium dodecyl sulfate as surfactant. The as-fabricated NFLS showed a well-defined periodic layered-stacking geometry with a scale down to 1-nm. Benefitting from the unique structure, NFLS exhibited an excellent catalytic activity towards OER with current densities of 10 mA·cm−2 at overpotential of 197 mV. The synergistic effect of Ni and Fe plays a key role in electrode reactions. The present work provides a new insight to improve the OER performance by rational design of electrocatalysts with unique structures. [Figure not available: see fulltext.].

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View