Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Determining Atomic-Scale Structure and Composition of Organo-Lead Halide Perovskites by Combining High-Resolution X‑ray Absorption Spectroscopy and First-Principles Calculations

Abstract

We combine high-energy resolution fluorescence detection (HERFD) X-ray absorption spectroscopy (XAS) measurements with first-principles density functional theory (DFT) calculations to provide a molecular-scale understanding of local structure, and its role in defining optoelectronic properties, in CH3NH3Pb(I1-xBrx)3 perovskites. The spectra probe a ligand field splitting in the unoccupied d states of the material, which lie well above the conduction band minimum and display high sensitivity to halide identity, Pb-halide bond length, and Pb-halide octahedral tilting, especially for apical halide sites. The spectra are also sensitive to the organic cation. We find that the halides in these mixed compositions are randomly distributed, rather than having preferred octahedral sites, and that thermal tilting motions dominate over any preferred structural distortions as a function of halide composition. These findings demonstrate the utility of the combined HERFD XAS and DFT approach for determining structural details in these materials and connecting them to optoelectronic properties observed by other characterization methods.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View