Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Lower serum hepcidin and greater parenchymal iron in nonalcoholic fatty liver disease patients with C282Y HFE mutations

Published Web Location

https://doi.org/10.1002/hep.25856
Abstract

Unlabelled

Hepcidin regulation is linked to both iron and inflammatory signals and may influence iron loading in nonalcoholic steatohepatitis (NASH). The aim of this study was to examine the relationships among HFE genotype, serum hepcidin level, hepatic iron deposition, and histology in nonalcoholic fatty liver disease (NAFLD). Single-nucleotide polymorphism genotyping for C282Y (rs1800562) and H63D (rs1799945) HFE mutations was performed in 786 adult subjects in the NASH Clinical Research Network (CRN). Clinical, histologic, and laboratory data were compared using nonparametric statistics and multivariate logistic regression. NAFLD patients with C282Y, but not H63D mutations, had lower median serum hepcidin levels (57 versus 65 ng/mL; P = 0.01) and higher mean hepatocellular (HC) iron grades (0.59 versus 0.28; P < 0.001), compared to wild-type (WT) subjects. Subjects with hepatic iron deposition had higher serum hepcidin levels than subjects without iron for all HFE genotypes (P < 0.0001). Hepcidin levels were highest among patients with mixed HC/reticuloendothelial system cell (RES) iron deposition. H63D mutations were associated with higher steatosis grades and NAFLD activity scores (odds ratio [OR], ≥1.4; 95% confidence interval [CI]: >1.0, ≤2.5; P ≤ 0.041), compared to WT, but not with either HC or RES iron. NAFLD patients with C282Y mutations had less ballooning or NASH (OR, ≤0.62; 95% CI: >0.39, <0.94; P ≤ 0.024), compared to WT subjects.

Conclusions

The presence of C282Y mutations in patients with NAFLD is associated with greater HC iron deposition and decreased serum hepcidin levels, and there is a positive relationship between hepatic iron stores and serum hepcidin level across all HFE genotypes. These data suggest that body iron stores are the major determinant of hepcidin regulation in NAFLD, regardless of HFE genotype. A potential role for H63D mutations in NAFLD pathogenesis is possible through iron-independent mechanisms.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View