Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Tunnel-FET Switching Is Governed by Non-Lorentzian Spectral Line Shape

Abstract

In tunnel field-effect transistors (tFETs), the preferred mechanism for switching occurs by alignment (on) or misalignment (off) of two energy levels or band edges. Unfortunately, energy levels are never perfectly sharp. When a quantum dot interacts with a wire, its energy is broadened. Its actual spectral shape controls the current/voltage response of such transistor switches, from on (aligned) to off (misaligned). The most common model of spectral line shape is the Lorentzian, which falls off as reciprocal energy offset squared. Unfortunately, this is too slow a turnoff, algebraically, to be useful as a transistor switch. Electronic switches generally demand an on/off ratio of at least a million. Steep exponentially falling spectral tails would be needed for rapid off-state switching. This requires a new electronic feature, not previously recognized: narrowband, heavy-effective mass, quantum wire electrical contacts, to the tunneling quantum states. These are a necessity for spectrally sharp switching.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View