Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Posterior rim loading of a low-conforming tibial insert in unrestricted kinematic alignment is caused by rotational alignment of an asymmetric baseplate designed for mechanical alignment.

Abstract

Purpose

Because different targets are used for internal-external rotation, an asymmetric baseplate designed for mechanical alignment may lead to under-coverage and concomitant posterior rim loading in the lateral compartment following unrestricted kinematic alignment (KA) TKA. Recognizing that such loading can lead to premature wear and/or subsidence, our aim was to determine the cause(s) so that occurrence could be remedied. Our hypothesis was that baseplate design features such as asymmetric shape when aligned in KA would consistently contribute to posterior rim loading in the lateral compartment.

Methods

Based on analysis of fluoroscopic images of 50 patients performing dynamic, weight bearing deep knee bend and step up and of postoperative CT images, five possible causes were investigated. Causes included internal rotation of the baseplate when positioned in KA; posterior position of the lateral femoral condyle at extension; internal tibial rotation with flexion; internal rotational deviation of the baseplate from the KA rotation target; and posterior slope.

Results

The incidence of posterior rim loading was 18% (9 of 50 patients). When positioned in KA, the asymmetric baseplate left 15% versus 10% of the AP depth of the lateral compartment uncovered posteriorly for posterior rim loading and non-posterior rim loading groups, respectively (p = 0.009). The lateral femoral condyle at extension was more posterior by 4 mm for the posterior rim loading group (p = 0.003).

Conclusions

Posterior rim loading in the lateral compartment was caused in part by the asymmetric design of the tibial baseplate designed for mechanical alignment which was internally rotated when positioned in KA thus under-covering a substantial percentage of the posterior lateral tibia. This highlights the need for new, asymmetric baseplates designed to maximize coverage when used in KA.

Level of evidence

III.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View