Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Student Sorting and Bias in Value-Added Estimation: Selection on Observables and Unobservables

Abstract

Nonrandom assignment of students to teachers can bias value-added estimates of teachers' causal effects. Rothstein (2008, 2010) shows that typical value-added models indicate large counterfactual effects of fifth-grade teachers on students' fourth-grade learning, indicating that classroom assignments are far from random. This article quantifies the resulting biases in estimates of fifth-grade teachers' causal effects from several value-added models, under varying assumptions about the assignment process. If assignments are assumed to depend only on observables, the most commonly used specifications are subject to important bias, but other feasible specifications are nearly free of bias. I also consider the case in which assignments depend on unobserved variables. I use the across-classroom variance of observables to calibrate several models of the sorting process. Results indicate that even the best feasible value-added models may be substantially biased, with the magnitude of the bias depending on the amount of information available for use in classroom assignments.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View