UC Berkeley

Research Reports

Title
Rapid Prototyping Of Advanced Driver Interface Systems

Permalink
https://escholarship.org/uc/item/1bx1515d

Authors

Massa, Laura |.
Mendel, Max B.

Publication Date
1993

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/1bx1515d
https://escholarship.org
http://www.cdlib.org/

This paper has been mechanically scanned. Some
errors may have been inadvertently introduced.

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

Rapid Prototyping of Advanced Driver
| nterface Systems

Lauren J. Massa
Max B. Mendel

UCB-ITS-PRR-93-8

This work was performed as part of the California PATH Program of
the University of California, in cooperation with the State of California
Business, Transportation, and Housing Agency, Department of
Transportation; and the United States Department of Transportation,
Federal Highway Administration.

The contents of this report reflect the views of the authors who are
responsible for the facts and the accuracy of the data presented herein.
The contents do not necessarily reflect the official views or policies of
the State of California. Thisreport does not constitute a standard,
specification, or regulation.

AUGUST 1993

ISSN 1055-1425

Rapid Prototyping of Advanced Driver
Interface Systems

Lauren J. Massa and Max B. Mendel
April 30, 1993

1 Introduction

This report describes a computer environment for rapidly prototyping user
interfaces for advanced driver information systems or ADIS. The work was
carried out in the Systems Integration Laboratory at the Department of
Industrial Engineering, UC Berkeley. In addition to the authors, Dr. James
Roseborough has contributed significantly to the project.

1.1 Background

Using an environment for rapid prototyping of user interfaces, radically dif-
ferent design ideas can be implemented in prototypical form almost instan-
taneously at no additional costs, resulting in better designs in shorter time.

Currently, prototyping a user interface is a time consuming and hardware
intensive process; it typically takes tens of years for an effective user interface
to emerge. For instance, the driver interface in a car has been evolving over
70 years from where the car could only be driven by a trained chauffeur
to where it can be driven by almost any adult. A VCR, on the other hand,
remains difficult to program, despite being in the market for about ten years.
The ability to rapidly prototype high-fidelity user interfaces would provide
a means to converge to an effective interface during initial design phases,
rather than at incremental steps taken when a new model is brought on the
market.

Systems which create user interfaces for computer programs are already
being developed. For instance, Next’s InterfaceBuilder allows a program
developer to rapidly create an interface consisting of buttons, menu items,
etc. Development environments also exist for the Motif and OpenLook toolk-
its. Such systems are called “User Interface Management Systems” or UIMS.
Similar advanced prototyping technology is applied to Computer Aided Soft-
ware Engineering (CASE) and semiconductor CAD/CAE. Early systems pro-
vided a more inexpensive way to produce designs, but were focused primarily
on producing design artifacts and providing facilities for automated design
rules checking. These systems have evolved into sophisticated tools; they
incorporate moderate to extensive automation and often use Al and expert
systems techniques. However, transfer of rapid prototyping technology into
many other areas including human factors has not been realized. Generally,
the critical applications incorporate the most advanced tools. For exam-
ple, the Army-NASA Aircrew/Aircraft Integration (A3) research program
is developing a prototype of a human factors CAE facility for the design
of helicopter cockpits [5]. An automation science research facility at NASA
Ames is based on the integration of NASA Ames’s human factors and Al
capabilities, due to a recognition that both fields are integral to automation
science [6]. General Motors is in the progress of transferring the technology
for high resolution simulation from Hughes.[2] In addition there have been
several academic research projects described in the literature that have con-
cerned tapid prototyping and human factors for areas such as traffic control
and information systems [10] , telecommunications systems [9], [4], control
panels 7], and generalized human interfaces [11], [8].

1.2 System Overview

Figure 1 is a screendump showing a sampling of the tools available in the
rapid prototyping environment in its current state. A designer can sim-
ply “drag” around input and output devices such as slides, buttons, dials,
alarms, knobs, thumbwheels etc., place them in a window representing the
interface, resize them, and connect them to other devices, other applications,
or I/O-ports connected to an outside system such as the ADIS system. The
environment allows the designer to toggle to a “test interface” mode in which
he or she can evaluate the design and also create a running C program. It is
also possible to drag in and connect simple sounds like “clicks” and alarms

2

from a sound kit and to create icons which can be dragged into the design.

The environment is built on Next’s InterfaceBuilder, a UIMS bundled
with the NextStep operating system. Palettes containing typical software
interface devices such as buttons, sliders, and text fields were provided by
Next. We extended the library of palettes to contain devices useful for inter-
facing with ADIS systems such as a rapidly prototypable map and general
user-interface devices such as the dials and knobs. Figure 2 displays a screen-
dump of custom object palettes. After dragging an object in a window, it can
be customized partly using the mouse, partly through an inspector panel. In
this way, users with no programming experience may produce new software
components to graphically represent instruments and controls in applications.

A graphical object on its own is of little use unless the corresponding code
is linked together with other software modules to form a complete program.
Therefore a built in facility allows one to connect any instrument or control
object to other software modules. For example, a control panel component
such as a dial may be connected to a software module that the user has
developed to supply input to the dial. That software input module could be
a simulation subsystem, or a low level hardware driver used to collect real-
world data. In the complete system that we envision the user could integrate
alternative simulation components for rapid experimentation.

A classroom setting during two semester-long human-factors courses pro-
vided an initial test-bed for empirical observations. Naive users over a short
period of time (the sixteen week semester) have been observed using the
system successfully, with little or no assistance, to produce new designs for
instruments and controls. Thus, the rapid prototyping system has proven to
be a valuable instructional tool.

2 An Example of the System in Use

In this section we describe typical usage of the environment from the user’s
perspective.

Consider the design of the instrument cluster for a new concept auto-
mobile. This advanced vehicle will incorporate several new technological
advances including Advanced Transportation Management and Traveler In-
formation Systems (ATMS and ATIS)[10]. First, the designer will produce
a rough prototype. Using a mouse to select menu items, a blank page appli-
cation is selected by clicking on the IB icon, starting the Interface Builder
which has been preconfigured to include the environment’s extensions. The
designer decides to begin with instrumentation, so the DIALS palette is se-
lected. Figure 3 is a screendump of the graphical menu of the environment’s
palettes along with our example project in progress. DIAL type objects
which will represent the odometer and rpm indicator are pointed to with a
mouse, and dragged into position in a window that will be displayed by the
new application. An LCD map display is required for the ATIS; the MAPS
palette is selected and a map object is positioned. Figure 4 depicts the map
object class palette, and the map object instance that has been added to
the project. Also shown is the inspector, which is a display of the methods
and variables the object is composed of. Continuing on in this manner other
objects are incorporated into the prototypical simulated instrument panel.
In addition, a control panel is created using palettes of templates for control
objects such as buttons, knobs, trackballs, etc.

The designer decides to increase the size of the map (the default size is
the smallest size readable for the 90 percentile). Using the mouse, he or she
can click on the object and then manipulate it to “stretch” it into a larger
size. The map class may have a constrained width to length ratio so that it
will conform to a particular standard for ATIS/ADIS maps in automobiles.
After making a few adjustments to some of the other objects, the design is
finalized. The development system then automatically generates the software
code to represent the objects. Now the designer may proceed to “connect”
the instrument and control panel objects to existing software modules that
will simulate the I/0. The new application may now be run immediately by
using IB’s facility for testing an interface.

Given the complete system that we envision, in addition to being able
to design new interfaces and applications and connect the object instances

4

to simulator or hardware I/O modules, one could also run automated or
interactive simulations, analyse the data collected during these test runs,
and use the results of the analyze to tune the design. The user would iterate
through the these steps as many time as is necessary to optimize the design.
At any point in the process, he or she may decide to integrate a new class
of instrument or control objects, such as a voice recognition object class, or
sound synthesis class or an “earcon”(3], for example. One could also use
the envisioned environment to optimize not only the design, but the design
process or subprocesses such as simulation of test runs. For example, time on
a high resolution simulator is a valuable resource. Environment tools could
be used to validate a low resolution version of a test-run, in advance.

3 Design Methodology

In this section we describe the design methodology used to develop the envi-
ronment. A brief introduction to the object oriented paradigm is presented.

3.1 The System Design: An object oriented approach

The object oriented design paradigm has its roots in a number of areas in-
cluding computer science, artificial intelligence, and philosophy. During the
early 1970’s, the term object appeared almost independently in various fields
of computer science, simultaneously. [1]

An object oriented paradigm is one in which the system to be represented
in software is viewed as a collection of objects which have a one-to-one cor-
respondence with objects in the real world or some other problem space, (an
object may be intangible). In our case, real-world objects are classified and
positioned in a structure that is a directed graph; a hierarchical tree struc-
ture in which the most generalized object classes are near the higher levels,
or root of the structure, and more specialized object classes are classified at
lower levels. An arc in the graph represents an 'is a type of’ or ’isa’ relation
between nodes (and thus an existence dependency). Each node (i.e. object
class) inherits attributes from its predecessor node(s). All attributes of all
predecessors on the path to a node are inherited, however attributes may
be overridden by a definition of the attribute within the node or its clos-
est predecessor. Attributes are generally methods for performing operations.
Given a defined class hierarchy, a programmer will declare instances of the
object classes. It is the instance of the class or type that performs operations
utilizing the methods available for that class of object, during run time. The
environment automates the creation of the software code representing an in-
stance and supports online manipulation of object instances and supporting
code modules.

A primary reason why we are following the object oriented paradigm is
that a class hierarchy can represent the system in a way that mirrors the
way designers and engineers think. In addition, the object oriented repre-
sentation is isomorphic with the behavior of the system, real world objects,
and relationships between objects and data. In this way, related information
is encapsulated and hidden within each object. Data encapsulation makes
it easier to design for iterative enhancement, and the inherent modularity

6

supports the integration of heterogeneous subsystems. Because data encap-
sulation associates data with related methods, data handling and information

management can be facilitated.

4 System Architecture

In this section we describe the architecture of the environment.

The software/hardware system architecture is depicted in Figure 5. The
hardware platform consists of one or more workstations connected by ether-
net. A workstation can be any that will run the NeXTSTEP environment.
Platform cluster(s) may contain heterogeneous machine types. The NeXT
workstations run the Mach operating system in coexistence with BSD UNIX.
However, on other platforms such as HP%, Sun%, PCs%, etc the operating
system may be different. The PC platform is scheduled to be released in the
first quarter of 1993; releases for the other platforms are scheduled for 1994.

NeXTSTEP comes with a user level layer of source code, applications
and GUI components. In Figure 5, this is labeled “The Integration Layer”
The environment code is integrated with NeXTSTEP through two of the
component applications in the user level layer, called Project Builder (PB)
and Interface Builder (IB). PB is the vehicle for generating new custom
objects. IB is the mechanism for manipulating the existing environment
objects and incorporating them into the user® applications.

Like all object classes created using NeXTSTEP, the environment ob-
ject classes are specializations on the existing NeXTSTEP classes. Figure 6
depicts the environment class objects and their relationship to the built-in
NeXT classes. The environment classes correspond to the new nodes added
to the NeXTSTEP class hierarchy graph (shaded).

All of the environment object classes inherit attributes from a set of
NeXT classes unless an attribute has been overridden. One very useful subset
of the inherited attributes is called the Inspector. Inspectors are software
code modules which empower the user by allowing the non-programmer to
perform two tasks otherwise not feasible. These tasks are: viewing and
manipulation of the attributes of an object, and connection of an object’
input variables to the output variables of other code modules.

In the NeXT Objective C terminology, input/output variables are referred
to as inlets and outlets. Typically the user will utilize the IB and an inspector
to put together software components by connecting the inlets and outlets of
an object which will represent the human-machine interface. To the user,
this corresponds to the pointing and clicking on icons and menus, and drag
and drop” of objects as described in the introduction.

5 Summary, Conclusions, and Future Direc-
tions

In this section we present a summary of our accomplishments, our conclu-
sions, and a brief description of future directions that our research may take.

5.1 Summary and Conclusions

In our view a rapid prototyping system is one which supports the research,
design and development process by providing facilities for very quickly simu-
lating the full scale or physical prototypes that have been traditionally used
in the application area. We have identified the following goals and features
for such a framework. It must

1. support the existing design procedures in the application area,
2. promote evolution of the existing design process,

3. employ integration of heterogeneous subsystems,

4. provide automation and visualization tools,

5. integrate data acquisition tools,

6. accommodate the naive computer user.

In addition to determining the necessary features, we have investigated the
feasibility of our generic approach to rapid prototyping human-machine in-
terfaces as applied to advanced driver interface systems. We have addressed
support for all of the six features to some extent because we have realized
a primary enabling technology (CASE for ADIS). However, we have limited
the scope of our in-depth investigation to two of the six features. These are
numbers 4., automation and visualization tools and number 6., a user inter-
face for naive computer users. We have accomplished this through transfer
of existing CASE technology to the problem domain of rapid prototyping
advanced driver interface systems. Empirical observation of the interaction
of computer users (undergraduate IEOR students) has been carried out over
two (16 week) semesters. In our opinion the observations show that the au-
tomation and visualization tools we have developed are sufficient for naive

computer users to rapidly explore and produce a variety of designs for human-
machine interfaces and ADIS. The implications of our observations are that
the environment has the potential for greatly improving the existing methods
of design prototyping ADIS, just as it was observed to do in the classroom
test-bed. Significant cost reductions, increased reliability, shorter design cy-
cles and more complete investigation of possible design alternatives are some
of the benefits that rapid prototyping of ADIS has to offer. Perhaps most
importantly, the designer is empowered to use tools that might otherwise not
be directly accessible.

5.2 Future Directions

During the process of investigating the feasibility of our approach, we have
become aware of additional issues that need to be addressed.
These are:

1. how to support heterogeneous data formats,
2. the need for a generic mechanism for managing data.

Although there is nothing data format specific in any part of the environment,
developing the palette for ATIS maps would have been easier if we had some
mechanism predefined for handling disparate data formats. We can expect
that specifics required to address this issue will be forthcoming in the form
of industry standards. A part of our future research should be continuing to
track and assess emerging standards.

Another area of future research must be investigation into a generic strat-
egy for management of data. From one view of the system, data is encapsu-
lated and hidden in object instances. However, we have not addressed the
high level management of this data; see Section 3. In the current implementa-
tion of the environment we have encoded a small subset of the many possible
design constraints, and we have not integrated any modular modeling and
simulation components. Therefore it has been feasible for the system to func-
tion without a data management subsystem. However, in order to increase
the scope of the research we must provide a subsystem capable of handling
large amounts of data.

Our future work will include the development of additional object classes
to represent a larger variety of objects. We would like to span the set of

10

objects required to investigate the human factors issues inherent to all of the
different kinds of human input/output. There are areas of visual i/o as well
as the entire area of sound, and most of the tactile issues that have not been
addressed. Once we have a set of objects spanning these , we would like
to design and run experiments so that we may characterize the ergonomic
constants of the objects as predictors of human interaction with the end user
product. This will require expanding the scope of the research to include
modeling and simulation components.

We would like to build a complete complement of modeling components
that we may use to simulate 1/0 for objects. In connection with this goal,
the methodology for incorporating heterogeneous model components needs
to be addressed. Again, data management lies at the root of this issue, and
it is the next enabling technology we will need to realize.

As a part of the process, we will determine the requirements, specify,
and develop the methods and classes required to manage the environment’
data. We will develop our own models and those collected from others to
validate the approach as a means for integrating heterogeneous components.
In connection with the ergonomic issues described above, some of the models
we wish to integrate will be human performance models. Human performance
models can be used to implement design rules checking and to investigate
the feasibility of developing an intelligent designer assistant as a part of the
system.

11

References

[1] G . Booch. Object Oriented Design with Applications. Ben-
jamin/Cummings Publishing Company, Inc., Redwood City, California,
1991.

[2] Scott T. Wood. Charles M. Enderby. Head-up display in automo-
tive/aircraft applications. Electronic display technology and information
systems, 1992.

[3] M. Cohen and N. Koizumi. Audio windows for sound field telecommuni-
cation. 7th Symposium on Human Interface, October 1991 Paper 2433,
1991.

[4] J. C. Tolmie D. T. Henskes. Rapid prototyping of man-machine inter-
faces for telecommunications equipment using interactive animated com-
puter graphics. In B. Shakel H. J. Bullinger, editor, Human-Computer
Interaction: INTERACT 87, pages 1053-1058, Amsterdam, 1987. North
Holland.

[5] et al. Elkind, Jerome I. Use and integration of models. In Ju-
lian Hochberg Jerome I. Elkind, Stuart K. Card, editor, Human Per-
formance Models for Computer-Aided Engineering, page Chapter 3, San
Diego, California, 1990. Academic Press, Inc.

[6] Dwain A. Deets Eugene. L. Duke, Victoria A Regenie. Rapid prototyping
facility for flight research in artificial-intelligence-based flight systems
concepts. NASA Technical Memorandum; 88268, 1986, 1986.

[7] K. Freburger. Rapid: Prototyping control panel interfaces. In Proc.
of the OOPSLA-87: Conjerence on Object-Oriented Programming Sys-
tems, Languages and Applications, pages 416-422, Orlando, Florida,
1987.

[8] D. W. Parker J. R. Harris. Evaluation of rapid prototyping methodology
in a human interface. In Human-Computer Interaction: INTERACT 87,
pages 1059-1063, Amsterdam, 1987. North Holland.

12

[9] J. D. Gould J. T. Richards, S. J. Boies. Rapid prototyping and system
development: Examination of an interface toolkit for voice and tele-
phony applications. Proc. CHI-86,216-220, 1986.

[10] P. Jovanis and R. Kitamura. User perceptions and safety implications of
in-vehicle navigation systems. In Dept. of Civil Engineering and Davis
Transportation Research Group, University of California, editors, Vehi-
cle Navigation and Information Systems Conference, 1st, Toronto, On-
tario, 1989. VNIS 89 New York, NY: IEEE.

[11] J. Ebert R. Gimnich. Constructive formal specifications for rapid proto-
typing. In Human-Computer Interaction: INTERACT 87, pages 1047-
1052, Amsterdam, 1987. North Holland.

13

Dial inspector

Figure 1 rapid prototyping environment

1st Street
2nd Avenue

¢4 3rd Avenue
3rd Street
4st Avenue

L

Figure 2 Custom object palettes

mo Sy

sl

vohotran)

Figure 3 An instrumentation project

: 3rd Avenue

ﬁ 4st Avenue

Figure 4 The instrumentation ATIS project

USER PROTOTYPE

RAPID PROTOTYPING ENVIRONMENT

o
e

—
i

THIRD PARTY SUBSYSTEMS

HOST OPERATING SYSTEM & C LIBRARIES

FIGURE 5 SYSTEM COMPONENTS AND RELATIONSHIPS LJM 93

‘ FIG. 6 Environment classes and their relationship to NeXTSTEP classes

NeXTSTEP classes

RP-ADIS classes

LJM '93

