Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Epithelial Membrane Protein-2 (EMP2) Antibody Blockade Reduces Corneal Neovascularization in an In Vivo Model

Abstract

Purpose

Pathologic corneal neovascularization is a major cause of blindness worldwide, and treatment options are currently limited. VEGF is one of the critical mediators of corneal neovascularization but current anti-VEGF therapies have produced limited results in the cornea. Thus, additional therapeutic agents are needed to enhance the antiangiogenic arsenal. Our group previously demonstrated epithelial membrane protein-2 (EMP2) involvement in pathologic angiogenesis in multiple cancer models including breast cancer and glioblastoma. In this paper, we investigate the efficacy of anti-EMP2 immunotherapy in the prevention of corneal neovascularization.

Methods

An in vivo murine cornea alkali burn model was used to study pathologic neovascularization. A unilateral corneal burn was induced using NaOH, and subconjunctival injection of either anti-EMP2 antibody, control antibody, or sterile saline was performed after corneal burn. Neovascularization was clinically scored at 7 days postalkali burn, and eyes were enucleated for histologic analysis and immunostaining including VEGF, CD31, and CD34 expression.

Results

Anti-EMP2 antibody, compared to control antibody or vehicle, significantly reduced neovascularization as measured by clinical score and central cornea thickness, as well as by histologic reduction of neovascularization, decreased CD34 staining, and decreased CD31 staining. Incubation of corneal limbal cells in vitro with anti-EMP2 blocking antibody significantly decreased EMP2 expression, VEGF expression and secretion, and cell migration.

Conclusions

This work demonstrates the effectiveness of EMP2 as a novel target in pathologic corneal neovascularization in an animal model and supports additional investigation into EMP2 antibody blockade as a potential new therapeutic option.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View