- Main
Mitigating thermal runaway of lithium-ion battery through electrolyte displacement
Published Web Location
https://doi.org/10.1063/1.4975653Abstract
Alkanes are investigated as thermal-runaway retardants (TRR) for lithium-ion battery (LIB). TRR is a chemical that can rapidly terminate exothermic reactions in LIB. Under normal working conditions, TRR is sealed in separate packages in the LIB cell, and upon mechanical abuse, it is released to suppress heat generation. The alkanes under investigation include octane, pentadecane, and icosane, among which pentadecane has the highest thermal-runaway mitigation (TRM) efficiency. In nail penetration test on coin cells, ∼4 wt. % pentadecane reduced the maximum temperature by ∼60%; in impact test on pouch cells, ∼5 wt. % pentadecane reduced the maximum temperature by ∼90%. The high TRM efficiency of pentadecane is attributed to its high wettability to separator and its immiscibility with electrolyte. By forming a physical barrier between the cathode and anode, pentadecane interrupts lithium ion (Li+) transport and increases the charge transfer resistance by nearly two orders of magnitude. The diffusion rate of pentadecane in the electrode layer stack was measured to be ∼580 μm/s.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-