Skip to main content
eScholarship
Open Access Publications from the University of California

Impact of Polychlorinated Biphenyls Contamination on Estrogenic Activity in Human Male Serum

Published Web Location

https://doi.org/10.1289/ehp.7745
Abstract

Polychlorinated biphenyls (PCBs) are thought to cause numerous adverse health effects, but their impact on estrogen signaling is still not fully understood. In the present study, we used the ER-CALUX bioassay to determine estrogenic/antiestrogenic activities of the prevalent PCB congeners and PCB mixtures isolated from human male serum. The samples were collected from residents of an area with an extensive environmental contamination from a former PCB production site as well as from a neighboring background region in eastern Slovakia. We found that the lower-chlorinated PCBs were estrogenic, whereas the prevalent higher-chlorinated PCB congeners 138, 153, 170, 180, 187, 194, 199, and 203, as well as major PCB metabolites, behaved as antiestrogens. Coplanar PCBs had no direct effect on estrogen receptor (ER) activation in this in vitro model. In human male serum samples, high levels of PCBs were associated with a decreased ER-mediated activity and an increased dioxin-like activity, as determined by the DR-CALUX assay. 17beta-Estradiol (E2) was responsible for a major part of estrogenic activity identified in total serum extracts. Significant negative correlations were found between dioxin-like activity, as well as mRNA levels of cytochromes P450 1A1 and 1B1 in lymphocytes, and total estrogenic activity. For sample fractions containing only persistent organic pollutants (POPs), the increased frequency of antiestrogenic samples was associated with a higher sum of PCBs. This suggests that the prevalent non-dioxin-like PCBs were responsible for the weak antiestrogenic activity of some POPs fractions. Our data also suggest that it might be important to pay attention to direct effects of PCBs on steroid hormone levels in heavily exposed subjects.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View