Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Impact of protein identity on tumor-associated antigen uptake into infiltrating immune cells: A comparison of different fluorescent proteins as model antigens

Abstract

Effective immune responses depend on efficient antigen uptake in the periphery, transport of those antigens to, and presentation in draining lymph nodes (LNs). These processes have been studied intensively using stable fluorescent proteins (FPs) as model antigens. To date, ZsGreen is the only FP that can be tracked efficiently towards LNs, hence, it is difficult to compare studies using alternated tracking proteins. Here, we systematically compared six different FPs. We included ZsGreen, ZsYellow, DsRed, AsRed, mCherry, and mRFP based on sequence homology and/or origin species, and generated FP-expressing tumor cell lines. Stability of fluorescent signal was assessed in vitro over time, across different pH environments, and in vivo through FP antigen uptake and transfer to immune cells isolated from tumors and tumor-draining LNs. ZsGreen could be detected in high percentages of all analyzed tumor-infiltrating immune cells, with highest amounts in tumor-associated macrophages (TAMs) and type 2 conventional dendritic cells (cDC2s). ZsYellow, AsRed, and DsRed followed a similar pattern, but percentages of FP-containing immune cells in the tumor were lower than for ZsGreen. Strikingly, mRFP and mCherry demonstrated a 'non-canonical' antigen uptake pattern where percentages of FP-positive tumor-infiltrating immune cells were highest for cDC1s not TAMs and cDC2s despite comparable stabilities and localization of all FPs. Analysis of antigen-containing cells in the LN was hindered by intracellular degradation of FPs. Only ZsGreen could be efficiently tracked to the LN, though some signal was measurable for ZsYellow and DsRed. In summary, we find that detection of antigen uptake and distribution is subject to variabilities related to fluorophore nature. Future experiments need to consider that these processes might be impacted by protein expression, stability, or other unknown factors. Thus, our data sheds light on potential under-appreciated mechanisms regulating antigen transfer and highlights potential uses and necessary caveats to interpretation based on FP use.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View