Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Establishing Novel Molecular Algorithms to Predict Decreased Susceptibility to Ceftriaxone in Neisseria gonorrhoeae Strains.

Abstract

Background

Globally, decreased susceptibility to ceftriaxone in Neisseria gonorrhoeae is rising. We aimed to compile a global collection of N. gonorrhoeae strains and assess the genetic characteristics associated with decreased susceptibility to ceftriaxone.

Methods

We performed a literature review of all published reports of N. gonorrhoeae strains with decreased susceptibility to ceftriaxone (>0.064 mg/L minimum inhibitory concentration) through October 2019. Genetic mutations in N. gonorrhoeae genes (penA, penB, mtrR, and ponA), including determination of penA mosaicism, were compiled and evaluated for predicting decreased susceptibility to ceftriaxone.

Results

There were 3821 N. gonorrhoeae strains identified from 23 countries and 684 (18%) had decreased susceptibility to ceftriaxone. High sensitivities or specificities (>95%) were found for specific genetic mutations in penA, penB, mtrR, and ponA, both with and without determination of penA mosaicism. Four algorithms to predict ceftriaxone susceptibility were proposed based on penA mosaicism determination and penA or non-penA genetic mutations, with sensitivity and specificity combinations up to 95% and 62%, respectively.

Conclusion

Molecular algorithms based on genetic mutations were proposed to predict decreased susceptibility to ceftriaxone in N. gonorrhoeae. Those algorithms can serve as a foundation for the development of future assays predicting ceftriaxone decreased susceptibility within N. gonorrhoeae globally.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View