Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Electronic Theses and Dissertations bannerUC Berkeley

Realization of Integrated Coherent LiDAR

Abstract

LiDAR (Light Detection and Ranging) captures high-definition real-time 3D images of the surrounding environment through active sensing with infrared lasers. It has unique advantages that can compensate the fundamental limitations in camera-based 3D imaging via vision algorithms or RADARs, which makes it an important sensing modality to guarantee robust autonomy in self-driving cars. However, high price tag of existing commercial LiDAR modules based on mechanical beam scanners and intensity-based detection scheme makes them unusable in the context of mass produced consumer products.

The focus of thesis is on the integrated coherent LiDAR with optical phased array-based solid-state beam steering, which has great potential to dramatically bring down the cost of a LiDAR module. It begins with an overview of LiDAR implementation options and system requirements in the context of autonomous vehicles, which leads us to conclude that beam-steering coherent FMCW LiDAR in optical C-band is indeed the best implementation strategy to realize low-cost automotive LiDARs. Motivated by this observation, a quantitative framework for evaluating FMCW LiDAR performance is also introduced to predict the design that satisfies car-grade performance requirements. Then the thesis presents the silicon implementation results from our single-chip optical phased array and integrated coherent LiDAR prototype. Our implementations leverage the 3D heterogeneous integration platform, where custom silicon photonics and nanoscale CMOS fabricated at a 300 mm wafer facility are combined at the wafer-scale to minimize the unit cost without I/O density issues. After discussing remaining challenges and possible ways to enhance the operating range and system reliability, this thesis finally addresses the problem of fundamental trade-off between phase noise and wavelength tuning in FMCW laser source, and present circuit- and algorithm-level techniques to enable FMCW measurements beyond inherent laser coherence range limit.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View