Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Observations and parameterization of the effects of barrier height and source-to-barrier distance on concentrations downwind of a roadway

Abstract

New results are presented from wind tunnel studies performed at the United States Environmental Protection Agency (U.S. EPA), which include cases with solid roadside barriers of varying heights and cases with varying distances between the line source (roadway) and a 6-m-tall barrier. The Source-to-Barrier Distance cases include seven lanes of traffic with each lane acting as an independent source of continuous emissions along a line (i.e., line source). A mixed-wake algorithm that accounts for barrier effects within a steady-state air dispersion model was updated based on the recent wind tunnel studies. To study the effects of a solid roadside barrier, varying barrier heights and varying distances between the line source and barrier were modeled with the U.S. EPA regulatory air dispersion model AERMOD (v. 21112) using the line-source option that includes an experimental barrier option (RLINEXT). The mixed-wake algorithm reproduced the shape of the vertical concentration profiles observed in the wind tunnel data, including the uniform concentration profile from the ground vertically to a height somewhat greater than the height of the barrier. The algorithm responded appropriately to changes in barrier height and source-to-barrier distance, producing greater reductions in ground-level concentrations for taller barriers and for shorter source-to-barrier distances. Additionally, a rule of thumb that approximates the effect of a downwind barrier was formulated by converting an estimated vertical dispersion into an additional travel distance. The wind tunnel results, the update to the mixed-wake algorithm, and a comparison of the two data sets are described in this paper.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View