Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Structural and Compositional Factors That Control the Li-Ion Conductivity in LiPON Electrolytes

Abstract

Amorphous Li-ion conductors are important solid-state electrolytes. However, Li transport in these systems is much less understood than for crystalline materials. We investigate amorphous LiPON electrolytes via ab initio molecular dynamics, providing atomistic-level insight into the mechanisms underlying the Li+ mobility. We find that the latter is strongly influenced by the chemistry and connectivity of phosphate polyanions near Li+. Amorphization generates edge-sharing polyhedral connections between Li(O,N)4 and P(O,N)4, and creates under- and overcoordinated Li sites, which destabilizes the Li+ and enhances their mobility. N substitution for O favors conductivity in two ways: (1) excess Li accompanying 1(N):1(O) substitutions introduces extra carriers; (2) energetically favored N-bridging substitutions condense phosphate units and densify the structure, which, counterintuitively, corresponds to higher Li+ mobility. Finally, bridging N is not only less electronegative than O but also engaged in strong covalent bonds with P. This weakens interactions with neighboring Li+ smoothing the way for their migration. When condensation of PO4 polyhedra leads to the formation of isolated O anions, the Li+ mobility is reduced, highlighting the importance of oxygen partial pressure control during synthesis. This detailed understanding of the structural mechanisms affecting Li+ mobility is the key for optimizing the conductivity of LiPON and other amorphous Li-ion conductors.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View