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ABSTRACT 

Melanoma antigen recognized by T-cells 1 (MART-1) and tyrosinase-related protein-2 (TRP-2) 

are two useful markers for immunohistochemical detection of melanocytic tumors. However, 

these markers may be passively acquired (phagocytosed) rather than actively synthesized. 

Reverse transcriptase in situ polymerase chain reaction (RT in situ PCR) can amplify even small 

amounts of specific mRNA in cells and therefore confirm the cellular source of a marker. We 

developed a one-step RT in situ PCR procedure in which Tth polymerase synthesizes and 

amplifies cDNA from mRNA in a single reaction mixture. To examine its practicability and 

feasibility with formalin-fixed, paraffin-embedded (FFPE) tissue, we compared results of one-

step RT in situ PCR with those of immunohistochemistry (IHC). MART-1 mRNA was identified 

in the cytoplasm of lesional cells from 23/26 primary melanomas (92%), 9/9 metastatic 

melanomas (100%) and 5/6 nevi (83%). MART-1 epitope was detected by IHC in 23/24 primary 

melanomas (96%), 9/9 metastatic melanomas (100%) and 5/6 nevi (83%). TRP-2 mRNA was 

identified in the cytoplasm of lesional cells from 17/26 primary melanomas (65%), 6/9 metastatic 

melanomas (67%) and 4/6 nevi (67%). TRP-2 epitope was detected by IHC in 20/24 primary 

melanomas (83%), 9/9 metastatic melanomas (100%) and 4/6 nevi (67%). Both techniques 

detected MART-1 and TRP-2 in FFPE melanoma cell lines. Neither marker was detected in 

squamous cell carcinomas or basal cell carcinomas by RT in situ PCR or IHC.  We conclude that 

the RT in situ PCR technique can be successfully applied to FFPE tissue to determine the cellular 

sources of gene expression observed by conventional PCR approaches.        

Key words: MART-1, melanocytic neoplasms, melanoma, RT in situ PCR, tyrosinase-related 

protein-2 
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INTRODUCTION 

The ability to detect gene expression at the mRNA level in single identifiable cells 

would enhance our understanding of the molecular basis of biological responses. The reverse 

transcriptase in situ polymerase chain reaction (RT in situ PCR) may be used to detect mRNA in 

cells in tissue sections, cytospins or imprints. Unlike in situ hybridization, which also localizes 

specific nucleic acid sequences at the cellular level, RT in situ PCR has an amplification step that 

makes it more sensitive for low endogenous levels of mRNA.  

In previous studies of the RT in situ PCR technique, we demonstrated the presence of  

mRNA for the melanoma markers tyrosinase (TYR) and MAGE-3 (MAGEA3) in melanoma cell 

lines but not in non-melanoma cell lines (1, 2). We successfully modified the RT in situ PCR 

approach to detect mRNA for tyrosinase in archived formalin-fixed, paraffin-embedded tissues 

(3). However, although the technique used in these early studies has been applied widely, its 

technical complexity and unreliability prevent routine diagnostic application in paraffin-

embedded fixed archival materials (4). 

We have developed a one-step RT-PCR procedure that uses a single Tth (Thermus 

thermophilus) DNA polymerase to detect and amplify mRNA for melanoma markers in 

melanoma cell lines and archival formalin-fixed, paraffin-embedded tissues of melanocytic and 

other skin tumors.  In the one-step RT-PCR, the Tth DNA polymerase synthesizes gene-specific 

cDNA from the target mRNA sequence in the presence of Mn
2+ 

at elevated temperatures, and 

amplifies the cDNA in the same reaction. We used this procedure to detect melanoma antigen 

recognized by T-cells 1 (MART-1; also known as MELAN-A [MLANA]) (5-7) and tyrosinase-

related protein-2 (TRP-2; also known as DOPAchrome tautomerase [DCT]) (8, 9). These two 

melanoma-associated genes are expressed with high specificity in normal melanocytes and 
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melanocytic lesions, including melanoma and nevi. We used the same specimens to compare the 

sensitivity and accuracy of our one-step RT in situ PCR technique with the sensitivity and 

accuracy of immunohistochemistry (IHC) with antibodies to MART-1 and TRP-2. 

 

MATERIALS AND METHODS 

Cell block preparation 

 Three melanoma cell lines (M7, M14 and M26) were obtained from the John Wayne 

Cancer Institute at Saint John's Hospital and Health Center (Santa Monica, CA) (Courtesy Dr 

D.L. Morton). The cell lines were established and characterized at UCLA (10-12). The cultured 

cells were grown in RPMI-1640 plus 10% penicillin and streptomycin (Gibco, Grand Island, 

NY), harvested and collected in a Falcon tube. The cells were pelleted by centrifugation at 1500 

rpm for 10 min., washed three times with phosphate-buffered saline (PBS) and resuspended 

immediately in neutral-buffered formalin for 6-8 h. After fixation, the cells were centrifuged at 

1500 rpm for 10 min., washed in sterile distilled water and alcohols graded from 75 to 100%. 

The cell pellet was suspended for 2 h in xylene and embedded in paraffin wax at 65°C in a tissue 

cassette applied to a microtome support. 

 

Archival tissues from melanomas, nevi, and other tumors 

Formalin-fixed, paraffin-embedded tissue specimens were retrieved from the archives of 

the Surgical Pathology Section at UCLA and the Klinikum Nürnberg Nord, Nürnberg, Germany, 

with Institutional Review Board permission from both institutions. Of the 54 blocks, 35 were 

from melanoma (20 invasive primary melanomas, 6 melanomas in situ, and 9 melanoma 

metastases), 6 were from melanocytic nevi, 8 were from nonmelanocytic cutaneous tumors (4 
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squamous cell carcinomas and 4 basal cell carcinomas) and 5 were from tumor-free axillary 

lymph nodes from patients with breast cancer. Conventionally stained slides from all tissues were 

reviewed to confirm the diagnosis. 

 

Immunohistochemistry 

Representative sections from each lesion were processed for immunohistochemical 

staining with a monoclonal antibody cocktail for MART-1 (M2-7C10/M2-9E3; Zymed 

Laboratories, South San Francisco, CA) and a goat polyclonal antibody for TRP-2 (Santa Cruz 

Biotechnology, Santa Cruz, CA). 

Tissue sections (4 µm thick) were deparaffinized in xylene and dehydrated in graded 

ethanols. Epitope retrieval was performed by boiling in citrate buffer, pH 6.0, for 30 min. 

Endogenous peroxidase activity was blocked by 3% hydrogen peroxide for 30 min. Primary 

antibodies were diluted in PBS at 1:20 for MART-1 and 1:100 for TRP-2. Sections were 

incubated with the primary antibodies overnight at 4°C. Antibody-bridge labeling used the 

streptavidin-biotin-peroxidase method with biotinylated anti-mouse antibody (Vector 

Laboratories, Burlingame, CA) or biotinylated anti-goat antibody (DakoCytomation, Glostrup, 

Denmark), and streptavidin horseradish peroxidase (Zymed Laboratories). Sections were then 

reacted with aminoethyl carbazole as a chromogen (AEC; Zymed Laboratories), counterstained 

with hematoxylin and mounted. 

 

RT in situ PCR 

Preparation and pretreatment 

Tissue sections (4 µm thick) were placed on silane-coated slides, de-paraffinized and 
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hydrated through xylene and a graded alcohol series. The slide-mounted tissue sections were 

digested with trypsin (0.2 or 0.4 mg/ml; Roche Diagnostics, Mannheim, Germany) at 37°C for 

30-60 min and treated with RNase-free DNase I (70 U/tissue section; Roche Diagnostics) at 

37°C overnight. 

 

One-step RT in situ PCR 

The one-step RT in situ PCR approach was modified from a previously described 

technique (13, 14). The oligonucleotide primer sequences (Invitrogen, Carlsbad, CA) were 

derived from a previous paper (15) as shown in Table 1. For RT-PCR of MART-1 mRNA, the 

forward primer, 5’-CACGGCCACTCTTACACCAC-3’ and the reverse primer, 5’-

GGAGCATTGGGAACCACAGG-3’ yielded a product of 254 bp. For RT-PCR of TRP-2 mRNA, 

the forward primer, 5’-GAGGTGCGAGCCGACACAAG-3’ and the reverse primer, 5’-

CGGTGCCAGGTAACAAATGC-3’ yielded a product of 476 bp. The GeneAmp EZ rTth 

(recombinant Tth) RNA PCR Kit (Applied Biosystems, Foster City, CA) was employed. Each 

slide was loaded with the following mixture: 10µl of 5× EZ rTth buffer, 5µl of Mn(OAc)2, 1.6µl 

each of dATP / dCTP / dGTP / dTTP, 2µl of Tth DNA polymerase (Applied Biosystems), 0.6µl 

digoxigenin-11-dUTP, 1.6µl of 2% bovine serum albumin, 0.9µl of RNase inhibitor (Roche 

Diagnostics), 1.5µl of each primer, and 20.5µl diethylpyrocarbonate (DEPC)-treated water. The 

slides were covered with HybriWell sealing covers (Research Products International, Mount 

Prospect, IL) and placed on the GeneAmp In Situ PCR System 1000 thermal cycler (PerkinElmer, 

Foster City, CA). The cDNA syntheses were performed at 60°C for 30 min. After denaturation at 

94°C for 3 min, the cDNAs were amplified by 30 cycles of annealing at 55°C for 1 min and 

denaturation at 94°C for 30 sec. The slides were washed in 0.2× saline-sodium citrate (SSC) / 
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BSA (BSA; Sigma, St. Louis, MO) at 60°C for 15 min and rinsed in Tris-buffered saline (TBS) 

three times for 5 min. 

 

Immunodetection of RT-PCR products 

The digoxigenin-labeled PCR products were detected after incubation with an alkaline 

phosphatase-anti-digoxigenin conjugate (1:200) for 30 min (Roche Diagnostics) and developed 

in a chromogen of nitroblue tetrazolium and 5-bromo-4-chloro-3-indophosphatase (NBT/BCIP) 

for 15 min (Zymed Laboratories).  

 

Controls 

Control preparations were prepared by: (1) omission of the primer; (2) omission of the 

Tth DNA polymerase. 

 

RESULTS 

Melanoma cell lines  

After RT in situ PCR, cytoplasmic mRNA for MART-1 (Figure 1A) and TRP-2 (Figure 

1B) was strongly expressed and readily visible on microscopy of sections prepared from all three 

melanoma lines (M7, M14, M26). Nuclear staining was only occasionally observed. Control 

preparations without the primers (Figure 1C) or without the Tth DNA polymerase (Figure 1D) 

gave negative results, with no evidence of mRNA amplification. 

 

Formalin-fixed, paraffin-embedded tissues 

Results from evaluation of 49 archival tissues are summarized in Table 2. The specific 
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and amplified reaction signals detected by RT in situ PCR were mainly located in the cytoplasm.  

MART-1 epitope was detected by IHC in 5 of 6 nevi (83%) (Figure 2A), in 32 of 33 

melanomas (97%) (Figure 3A), and in normal basal-layer melanocytes of the follicular and 

interfollicular epidermis in all skin specimens. RT in situ PCR detected MART-1 mRNA in 23/26 

primary melanomas (92%): 6/6 melanomas in situ (radial growth phase melanoma) (100%) and 

18/20 invasive melanomas (radial and/or vertical growth phase) (90%) (Figure 3B).  MART-1 

mRNA was also identified by RT in situ PCR in 9/9 (100%) metastatic melanomas and 5/6 

(83%) nevi. Nests of nevus cells diffusely expressed MART-1 mRNA, as did single melanocytes 

in the epidermis overlying the dermal component of nevi (Figure 2B). The melanocytic nevus 

that was negative for MART-1 epitope and mRNA was a dermal nevus consisting exclusively of 

type C nevus cells. Squamous and basal cell carcinomas showed no evidence of MART-1 epitope 

by IHC or MART-1 mRNA by RT in situ PCR. 

TRP-2 epitope was detected by IHC in 20/24 primary melanomas (83%) [5/6 

melanomas in situ (83%) and 15/18 invasive melanomas (83%)], 9/9 metastatic melanomas 

(100%) and 4/6 melanocytic nevi (67%). TRP-2 mRNA was detected by RT in situ PCR in 17/26 

primary melanomas (65%)  [4/6 melanomas in situ (67%) and 13/20 invasive melanomas (65%)], 

6/9 metastatic melanomas (67%) and 4/6 melanocytic nevi (67%). Melanoma cells diffusely 

expressed TRP-2 (Figure 3A) and TRP-2 mRNA (Figure 3B). Squamous and basal cell 

carcinomas expressed neither TRP-2 epitope by IHC nor TRP-2 mRNA by RT in situ PCR. 

In an invasive melanoma that was negative for MART-1 and TRP-2 epitopes by IHC, 

RT in situ PCR detected mRNA for MART-1 and TRP-2 in melanoma cells at the dermo-

epidermal junction and in the superficial papillary dermis, but not in melanoma cells in the 

deeper dermis. 
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Slides from 5 axillary lymph nodes from breast cancer patients showed no evidence of 

amplification of MART-1 mRNA or TRP-2 mRNA. 

 

DISCUSSION 

RT in situ PCR of formalin-fixed, paraffin-embedded tissue sections identified MART-1 

mRNA and TRP-2 mRNA in lesional cells of primary and metastatic melanomas and 

melanocytic nevi. Neither marker was found in cutaneous squamous and basal cell carcinomas, 

tumors of non-melanocytic histogenesis.  

MART-1, a melanoma antigen recognized by tumor-infiltrating T lymphocytes in 

melanoma patients (5, 6), is widely used in the evaluation of melanomas. The antibody to 

MART-1 is specific for the gp100/pmel 17 glycoprotein antigenic group. MART-1 is expressed 

in normal cells of melanocytic lineage in skin, uveal tract and retina but is absent from normal 

epithelia, fibroblasts and lymphocytes. MART-1 is detectable in a majority of melanomas and 

nevi (16) but is absent from non-melanocytic neoplasms, with the possible exception of adrenal 

cortical tumors and gonadal steroidal tumors (17, 18).  

TRP-2, a melanosomal enzyme with DOPAchrome tautomerase activity, is involved in 

melanogenesis (8). TRP-1 and TRP-2 are associated with distinct patterns of melanocyte 

distribution and function in normal skin and cutaneous pigmented lesions (19, 20). A recent study 

using quantitative PCR and cDNA array hybridization of tissues prepared by laser pressure 

catapulting verified high expression of TRP-2 by nevi and melanomas (21).  TRP-2 is involved 

in the protection of melanoma cells from apoptosis (22). TRP-1 and TRP-2 also suppress 

tyrosinase-mediated cell death of melanocytes and melanoma cells (23). Even in later stage 

amelanotic melanomas with severely impaired melanin synthesis, pigment-related genes 
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including TRP-1 and TRP-2 are expressed to a variable degree (15). 

In our study, RT in situ PCR and IHC gave comparable results for detection of MART-1, 

but respective rates for detection of TRP-2 in primary melanomas were 67% and 83%. The lower 

sensitivity of RT in situ PCR most likely reflects technical difficulties associated with PCR 

amplification in situ (4).  On the other hand, the intensity of MART-1 and TRP-2 expression by 

IHC may vary between individual cells in different areas of an individual tumor. Metastatic 

melanoma in particular often shows heterogeneous expression of MART-1 (24-26). The 

heterogeneous nature of expression of these melanoma-associated antigens expression is related 

to antigen silencing during melanoma progression. Oncostatin M (27) secreted by melanoma 

cells (28) down-regulates MART-1 and TRP-2.  Microphthalmia transcription factor-M (MITF-

M), a melanocyte-specific master transcription
 
factor, may also regulate MART-1 expression (29, 

30). Reduced expression of MITF-M is associated with lack of MART-1 expression by 

melanoma cells. In our study, a melanoma that was negative for MART-1 and TRP-2 by IHC had 

evidence of MART-1 mRNA and TRP-2 mRNA in melanoma cells at the dermo-epidermal 

junction and in the superficial papillary dermis, but not in the deep dermis. Thus antigen 

silencing can occur during local tumor progression, and may permit tumor cells to escape 

immune recognition and destruction by cytotoxic T cells (31). The clear discrepancy between 

mRNA and protein levels within some tumor cells is a strong argument for a gene-based method 

of detection. 

The sensitivity and reproducibility of RT in situ PCR can be increased by attention to 

several technical details. First, the duration of formalin fixation can affect RNA integrity (32-34). 

Quantitative RT-PCR analysis has demonstrated MART-1 mRNA in paraffin-embedded 

melanoma samples up to 3 weeks after fixation. However, detection of total mRNA is markedly 
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reduced in fixed tissues as compared with fresh tissues (35), and prolonged fixation is associated 

with suboptimal detection of mRNA by RT in situ PCR. 

Second, the optimal duration of protease digestion should be determined for each tissue 

sample (30-60 minutes in this study) (13). Available proteinases include proteinase K, pepsin, 

pronase and trypsin (36, 37). To avoid overdigestion, we used trypsin, which is more manageable 

than stronger proteases such as proteinase K. The mRNA signal detected by RT in situ PCR is 

mainly in the cell cytoplasm. A false-positive signal in the cell nucleus can be prevented by 

DNase digestion for up to 16 hr; longer digestion can damage cellular structure and reduce signal 

amplification (3, 38). Tissue must be adequately digested by protease prior to incubation with 

DNase; otherwise genomic DNA and histone protein will cross-link during formalin fixation, 

blocking access to DNA by DNase. Nonspecific amplification of residual DNA will create a 

“repair” artifact (13).  

 A third consideration is design of the primer. Because we used a specific oligonucleotide 

primer pair for both reverse transcription and PCR amplification, optimal annealing temperatures 

for reverse transcription and cDNA amplification were within a close range. Primer pairs can be 

prepared from the spliced sequences of mRNA in order to avoid non-specific PCR products. The 

use of primers across intron-exon junctions may circumvent problems of amplification of 

genomic DNA. We designed MART-1 primers to amplify across four different exons so that the 

amplified fragment would be only 254 bp, as compared with 16 kb between the same primer 

sites in the genomic DNA. The TRP-2 primers amplified across three different exons to create an 

amplicon of 476 bp, as compared with 12 kb between the primer pair in the genomic DNA. 

During PCR, the one-minute annealing step is long enough for cDNA priming but not for chain-

reaction amplification of long genomic DNA sequences. This should prevent the generation of 
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byproducts from genomic DNA.  However, the size of amplified product may affect the 

sensitivity of detection. In our study, the less favorable sensitivity of RT in situ PCR for detection 

of TRP-2 might have reflected the slightly larger size of the amplicon. Taking into consideration 

that its sensitivity and reproducibility may still fall short of IHC, further work is required to 

standardize the procedure for routine use. 

There are many potential practical applications for RT in situ PCR. Sentinel lymph node 

tissue that is negative by histology and immunohistology may have RT-PCR evidence of possible 

occult metastases (39-42). However, because of the inevitable cell destruction during RNA 

extraction, solution-phase RT-PCR cannot identify the cellular source of any amplified signals 

for mRNA. In this study, we have shown that it is possible to detect MART-1 mRNA and TRP-2 

mRNA in archival formalin-fixed, paraffin-embedded tissue sections of melanoma by a one-step 

RT in situ PCR technique. The in situ detection of melanoma-associated genes may have 

considerable potential to identify occult metastatic melanoma cells in nodal tissue sections and 

exclude other sources of melanoma-associated mRNA, such as melanophages.   
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FIGURE LEGENDS 

Figure 1. Specific expression of MART-1 mRNA and TRP-2 mRNA in M26 melanoma cell line. 

A positive signal is indicated by dark blue to purple coloration, predominantly in the cell 

cytoplasm. Cytoplasmic mRNA for MART-1 (A) and TRP-2 (B) is strongly expressed. Nuclear 

DNA was removed by DNase pretreatment. All negative controls, including omission of the 

primers (C) and omission of the Tth DNA polymerase (D), gave negative results. 

 

Figure 2. Detection of MART-1 in formalin-fixed, paraffin-embedded archival melanocytic 

nevus tissues. (A) Immunohistochemistry reveals that MART-1 (red coloration) is strongly 

expressed in nevus cells and single melanocyte in the basal layer of the epidermis. (B) By the RT 

in situ PCR technique, the reaction product of MART-1 mRNA (dark blue to purple coloration) is 

predominantly located in the cytoplasm of nevus cells, and the nucleus contains less reaction 

product. Single melanocytes in the basal layer of the epidermis express MART-1 mRNA 

(arrows).  

 

Figure 3. Detection of MART-1 and TRP-2 in formalin-fixed, paraffin-embedded archival 

primary melanoma tissues. (A) Immunohistochemistry reveals that MART-1 (red coloration) is 

heterogeneously expressed in primary melanoma cells. (B) By the RT in situ PCR technique, the 

reaction product of MART-1 mRNA (dark blue to purple coloration) is predominantly located in 

the cytoplasm of melanoma cells. Staining intensity is varied among individual tumor cells. (C) 

Immunohistochemistry reveals that TRP-2 (red coloration) is strongly expressed in the cytoplasm 

of melanoma cells. (D) TRP-2 mRNA (dark blue to purple coloration) is also strongly expressed 

in the cytoplasm of melanoma cells. 
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Table 1.  Primer Sequences and Sizes of RT-PCR Products 

    

Target Sequence S/AS Amplicon size 

5’-CACGGCCACTCTTACACCAC-3’ S 
MART-1 

5’-GGAGCATTGGGAACCACAGG-3’ AS 
254 bp 

    

5’-GAGGTGCGAGCCGACACAAG-3’ S 
TRP-2 

5’-CGGTGCCAGGTAACAAATGC-3’ AS 
476 bp 

S: sense, AS: anti-sense   

  

 

Table 2. Expression of mRNA and proteins for MART-1 and TRP-2 in nevi, primary and metastatic 

melanomas and keratinocytic tumors 

             

    MART-1   TRP-2 

  RT in situ  PCR  IHC  RT in situ  PCR  IHC 

Primary melanoma 24/26 (92%)   23/24 (96%)   17/26 (65%)   20/24 (83%) 

             

 in situ 6/6 (100%)  6/6 (100%)  4/6 (67%)  5/6 (83%) 

             

 invasive 18/20 (90%)  17/18 (94%)  13/20 (65%)  15/18 (83%) 

             

Metastatic melanoma 9/9 (100%)  9/9 (100%)  6/9 (67%)  9/9 (100%) 

             

Melanocytic nevi 5/6 (83%)  5/6 (83%)  4/6 (67%)  4/6 (67%) 

             

Squamous cell carcinoma 0/4 (0%)  0/4 (0%)  0/4 (0%)  0/4 (0%) 

             

Basal cell carcinoma 0/4 (0%)   0/4 (0%)   0/4 (0%)   0/4 (0%) 

             

 




