Skip to main content
eScholarship
Open Access Publications from the University of California

Topological Control on Silicates' Dissolution Kinetics

  • Author(s): Pignatelli, I
  • Kumar, A
  • Bauchy, M
  • Sant, G
  • et al.
Abstract

Like many others, silicate solids dissolve when placed in contact with water. In a given aqueous environment, the dissolution rate depends on the composition and the structure of the solid and can span several orders of magnitude. Although the kinetics of dissolution depends on the complexities of both the dissolving solid and the solvent, a clear understanding of which structural descriptors of the solid control its dissolution rate is lacking. By pioneering dissolution experiments and atomistic simulations, we correlate the dissolution rates-ranging over 4 orders of magnitude-of a selection of silicate glasses and crystals to the number of chemical topological constraints acting between the atoms of the dissolving solid. The number of such constraints serves as an indicator of the effective activation energy, which arises from steric effects, and prevents the network from reorganizing locally to accommodate intermediate units forming over the course of the dissolution.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View