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SPATIAL PROCUREMENT OF FARM PRODUCTS

AND THE SUPPLY OF PROCESSED FOODS:

APPLICATION TO THE TOMATO PROCESSING

INDUSTRY

STEPHEN HAMILTON, ETHAN LIGON, AND ARIC SHAFRAN

Abstract. Increased transportation and logistical costs in agri-
cultural markets have a�ected the spatial allocation of production
in the agricultural and food sectors of the economy. We develop
a spatial model of farm product procurement by a food processor,
designed to capture the e�ects of supply-chain disruptions on the
spatial procurement of farm products in the processed food sector.
We use detailed data on production and procurement by a large
California tomato processor to estimate the key parameters of the
model which allow us to calculate the price elasticity of supply
for California tomato paste production and describe how changes
in energy prices and transportation costs for primary agricultural
products a�ect the supply of processed food.
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1. Introduction

Recent supply chain issues involving shocks in transportation and
logistical costs in agricultural markets have played an important role in
food price in�ation, as rising energy costs and increased trucking rates
have a�ected the spatial allocation of production in the agricultural and
food sectors of the US economy. Agricultural products used as an input
in the production of manufactured or processed food products require
matching the production of primary agricultural products grown on
geographically dispersed farms with the operation of food processors,
who rely on the primary farm products to produce wholesale food for
downstream markets. Because primary agricultural products provide
the raw material inputs used by the food processing industry, farmers
who produce agricultural products for the processing sector tend to
co-locate with food processing plants (food processing �rms typically
operate several plants), raising the issue of how the allocation, pricing,
and distribution of primary agricultural products across space in the
upstream procurement market a�ects the supply of manufactured food
products in downstream markets.
In this paper, we examine how the spatial delivery of primary agri-

cultural products a�ects the elasticity of supply in the downstream
processed food market. While the importance of spatial delivery costs
for agricultural products has been recognized since at least Samuel-
son (1952) and Takayama and Judge (1971), it is surprising to note
that there has been little development of models to understand how
changes in transportation costs for primary agricultural products in
upstream markets a�ects the supply of processed food in downstream
markets.1 This omission is notable, because agricultural products are
generally homogeneous commodities traded at publicly-available and
observable prices, which provides an important lens to understand the
role of transportation and logistical shocks in input procurement on the
supply of manufactured goods more broadly in the economy. Under-
standing how changes in transportation costs impact consumer prices
for manufactured food is particularly important given the increased
public attention on energy policies such as carbon taxes that raise fuel
prices, and the potential role of such policies on food price in�ation and
the consumer incidence of commodity price shocks in the agriculture.
Transportation costs for primary agricultural products represent a

substantial portion of overall food processing costs. As C. Durham,
R. Sexton, and Song (1996) observe for the case of processed tomato

1A notable exception is Chavas, Cox, and Jesse (1998).
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products, changes over time in the geographic location of tomato pro-
duction in California caused tomatoes to be hauled longer distances,
raising transportation costs for the industry to a 15%-20% share of raw
product value. As a result, shocks in the transportation sector have the
potential to profoundly a�ect the supply of manufactured food prod-
ucts.
Among other things, understanding how changes in transportation

costs for primary agricultural products a�ect food processing costs is
important for understanding price pass-through in vertically structured
industries with an upstream input procurement market and a down-
stream manufactured product market. In the case of food markets, the
literature on wholesale and retail price pass-through has found sub-
stantial price rigidity at the wholesale level that reduces pass-through
rates and causes delayed pass-through to occur (Nakamura 2008; Naka-
mura and Zerom 2010; Hong and Li 2017). Bonnet et al. (2013)
point to the potential role of nonlinear pricing contracts and verti-
cal restraints in the manufacturer-retailer portion of the supply chain
in explaining wholesale price pass-through in response to cost shocks
in primary agricultural product markets; however, such an outcome
may be driven instead by changes in transportation costs in the food
processing/manufacturing sector when procurement costs rise over dis-
tance and upstream shocks in farm prices alter the spatial distribution
of deliveries. This is particularly true in cases where changes in food
commodity prices coincide with changes in energy prices, as in the
case of grain that can be used to produce either manufactured food or
biofuel.
We apply our model to examine the production of processing toma-

toes in California. The processing tomato industry in California is ideal
for studying these e�ects for several reasons. First, California food pro-
cessors are responsible for the production of roughly 95 percent of all
processing tomatoes in the US and have approximately 33 percent mar-
ket share global market share (USDA National Agricultural Statistics
Service 2022b). Second, unlike food manufacturing for highly di�er-
entiated food products, the production process for tomato processing
is relatively simple, essentially involving the combination of heat and
pressure to a primary agricultural input to produce processed tomato
products such as tomato paste. Third, the tomato processing industry
in California relies on a uniform pricing schedule, wherein all sellers of
primary agricultural products receive the same posted farm price for
processing tomatoes regardless of the �rm they contract with or their
distance from the processing plant (C. Durham, R. Sexton, and Song
1996). Unlike the case of free-on-board (FOB) or �mill� pricing under
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which a food processor pays a constant mill price at the plant gate and
sellers are responsible for costs of shipping product to the plant, uni-
form pricing involves the food processor fully absorbing the shipping
costs.2

In this paper, we develop a spatial model of primary agricultural
product procurement from the California processing tomato sector and
use this framework to characterize the processed food supply function
for tomato paste. Because farmers and food processors co-locate in
geographic space, the model results in pass-through of higher energy
costs that raise transportation costs for primary agricultural products
into higher prices for processed food. Predicting how changes in energy
prices and transportation rates in the farm sector impact processed food
supply is essential to understand how changes in farm product prices
pass through to changes in wholesale prices for manufactured foods.
Our model conceives the food processing �rm as relying on capi-

tal and labor inputs to operate one or more plants, where the scale of
the plant then determines its capacity to process a primary agricultural
product into manufactured food products. Firms of this sort must solve
not only the usual neoclassical problem of choosing optimal combina-
tions of inputs and scale to maximize pro�ts, taking prices as given,
but must also deal with the problem of sourcing the agricultural input
over geographic space from dispersed farm operations to the processing
plant. Because producing the primary agricultural product (processing
tomatoes, milk, corn, sugar beets, etc.) necessarily occurs on agricul-
tural land, and because di�erent land is better or worse suited to the
production of particular crops, the food processing �rm solves an im-
portant co-locational problem when it decides where to construct and
operate its plants. Speci�cally, as long as transporting the agricultural
input is costly (either because of the direct costs of moving the inputs,
or because of the perishability of the input) the �rm has an incentive to
locate its plants near productive agricultural land where the primary
agricultural product is sourced. The operating scale of the plant, in
turn, becomes a scarce factor that generates positive Ricardian (quasi)
rents.
We depart from the existing literature by modeling a production

process that requires sourcing the primary agricultural product from a
procurement market that involves increasing transportation costs over
distance. The processor chooses plant operating capacity in the long

2Uniform pricing, for this reason, has been noted as a form of price discrimina-
tion in which nearby growers cross-subsidize more distant growers (C. Durham, R.
Sexton, and Song 1996).
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run, which requires deployment of capital and labor inputs. Then
the processor procures a primary agricultural product (e.g., processing
tomatoes), applying pressure and heat to inputs of raw farm material to
produce a �nished processed food product (e.g., tomato paste) for sale
in the wholesale market. Changes in transportation costs for the pri-
mary agricultural product thereby a�ect the marginal cost of processed
food production by altering the geographic extent of the procurement
market around the processing plant, giving rise to an upward-sloping
supply function for the manufactured good.
To estimate the long run elasticity of supply for processed tomato

products, we combine restrictions from our simple model with propri-
etary data collected from a sample of California tomato processing �rms
to calculate the elasticity of processed tomato supply. Results from the
model are as follows: (i) the spatial distribution of primary agricul-
tural products a�ects the marginal cost of processed food supply; (ii)
in terms of the supply elasticity of processed food, greater land produc-
tivity and/or a larger land density of farms in geographic proximity of
the processing plant makes food product supply more elastic; (iii) pro-
cessed food supply becomes less elastic as plant capacity increases; and
(iv) higher transportation costs for the primary agricultural product,
for example from changes in logistical expenses of contracting loads,
make processed food supply less elastic. Perhaps surprisingly, we �nd
that changes in the �xed cost of loading farm products has essential
e�ects on the elasticity of processed food supply, while changes in unit
transportation costs do not.
We apply the model to examine the elasticity of supply for tomato

paste in California using detailed data on the spatial procurement of
processing tomatoes. Our estimate of the price elasticity of tomato
paste supply is 2.90, which is at the lower end of the range of residual
supply elasticity estimates facing food processors calculated by C. A.
Durham and R. J. Sexton (1992). The relative rigidity of tomato paste
supply vis a vis processing tomato supply in the upstream farm product
market indicates the important role of transportation costs in dampen-
ing price responses to output changes in markets with uniform pricing
and spatial procurement. We also identify novel impacts of transporta-
tion cost shocks on the output of processed food, contributing estimates
to the literature on the elasticity of processed food supply with respect
to various parameters of the transportation cost function.
The remainder of the paper is organized as follows. In the next

section we provide some background detail on the processing tomato
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market. Section 3 describes our model, focusing �rst on our novel de-
scription of production, and describing the �rm's inverse supply func-
tion given this form of production. The critical element for determining
supply and other elasticities is the cost of sourcing the primary agri-
cultural input from across di�erent points in space. We describe how
the location of agricultural production on land around the processing
plant a�ects transportation costs, and develop expressions describing
the input cost function in the case where farm products are procured
on a plane surrounding the processing plant. Section 4 describes our
highly granular data on processing tomato transport costs, which we
combine with additional data on processing outputs to construct an es-
timated transport cost function that we use to calculate various supply
elasticities. Section 5 concludes.

2. Background

California processed tomato manufacturers are responsible for pro-
ducing 96 percent of all processed tomato products in the U.S. (11.1
million metric tons (MT) out of 11.6 million MT in 2021) and pro-
vide nearly one-third of total world tomato supply (39.1 million MT in
2021). After California, Indiana, Ohio, and Michigan account for most
of the remaining domestic production, while the dominant international
producers that compete with California are in China, Italy, and Spain.
Processing tomatoes are mostly processed into tomato paste, with a
lesser share devoted to diced tomatoes and various tomato sauces.
During the prime processing season in late summer (July-September),

tomato processing facilities seek to maximize capacity by running con-
tinuously, 24 hours a day, 7 days a week. Part of the management
of this production schedule involves arranging harvest contracts with
growers that specify logistics and timing of deliveries. The raw toma-
toes are harvested ripe and supplied from farmers' �elds to the process-
ing facility, where they are maintained at the facility for a brief time
within the season, and are not kept in cold storage. Processed tomato
products such as tomato paste and canned tomatoes are shelf-stable
and generally are stored at room temperature on pallets or drums at
the plant for sale thoughout the year without the need for refrigera-
tion. Thus, storage of both processing tomatoes and processed tomato
output requires minimal additional energy beyond that accounted for
during production within the facility. While some Californian proces-
sors produce additional specialty products, the dominant products are
paste and diced tomatoes, which are either sold in bulk to downstream
food manufacturers for further processing into tomato sauce, ketchup,
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and other food products, or else are sold in retail-ready packaging for
consumers (USDA Economic Research Service 2022).
Within the State of California, the three biggest processing tomato

counties are Fresno, Yolo, and San Joaquin, in order of importance,
although signi�cant production also occurs in Kings, Colusa Counties,
Merced, Stanislaus, Solano, and Sutter counties. While farm produc-
tion of processing tomatoes is primarily centered in the San Joaquin
and Sacramento Valleys, 19 (of 58) counties in the state reported sig-
ni�cant processing tomato production in 2021 (see Table A.2).
Tomato is a warm-season crop, either planted by sowing seeds di-

rectly into the ground during late January or early February, or grown
in greenhouses until they are ready to be planted in the spring (Naeve
2015). The tomato harvest season typically lasts nineteen weeks with
the major portion of the harvest occurring between July and Septem-
ber. The harvest period typically begins in mid-July, and operates
at full capacity throughout August and September, with the harvest
season generally winding down in mid-October (Trueblood, Wu, and
Ganji 2013).
While some processing plants manufacture pulp-based products like

stewed and diced tomatoes, most initial processing is done by �rms
that manufacture raw paste. Almost all processing tomato produc-
tion in California is forward contracted between the grower and the
processing �rm, rather than sold on the open market, with prices set-
tled contractually well before the season starts. In terms of processed
food production, bulk tomato paste comprises roughly 50%-60% of pro-
cessed tomato output, followed by canned tomatoes and sauces, with
a small share sold as whole peeled tomatoes (USDA National Agri-
cultural Statistics Service 2022b). Thus, tomato paste is the most
important processed tomato product produced in California, which is
either sold in bulk form to downstream food manufacturers or else
used as an intermediate input in production of catsup and sauces. Af-
ter tomato paste, various sauces including puree, diced tomatoes, chili,
and pizza comprise the next largest sales category, followed by whole
peeled tomatoes.
Processing tomatoes are unique in that a single bargaining associa-

tion, the California Tomato Growers Association (CGTA), represents
the majority of growers, negotiating prices in contracts with each of
the nine tomato processors operating in the state. CGTA prices for
processing tomatoes are contracted prior to the growing season to en-
sure the participation of growers in the market, and as a result, a given
tomato processor pays all California farmers approximately the same
price for tomatoes in delivery contracts each season (though this price
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varies slightly across processors), with transportation arranged via uni-
form pricing.
In our analysis of the processing tomato market, we view the deci-

sion of farmers and processing plants to produce in a given region as a
co-location decision. Economic shocks that increase production costs
or shift consumer demand after the growing season commences thus
impact regional economic activity at both stages of production jointly.
Speci�cally, food processing plants and the farmers that support them
tend to exit the market together when the margin between the con-
sumer price and farm price narrows in relation to margins provided
elsewhere. For this reason, the transfer of processed food production
out of a particular region is closely tied to the land allocation decision
of farmers in the region (i.e., the long-run price elasticity of farm sup-
ply), and to the ability to trans-ship processed goods into the consumer
market from other regions to meet consumer demand.

3. The Model

Our analysis of processing tomato supply is based on a spatial model
of procurement in which food processors face increasing transportation
costs over distance to deliver farm products to the nearest processing
plant. We �rst describe a parametric production function for a rep-
resentative food processor operating a single plant (this analysis gen-
eralizes to multiple plants), and then provide a speci�cation of trans-
portation costs faced by the �rm given its plant's location. Finally,
we combine these elements together to derive the cost function for a
food processing �rm under spatial procurement of the farm input and
derive an expression for the inverse supply function for the case of a
price-taking �rm.

3.1. The Production Function. The production function of the food
processor has two components: (i) labor and capital required to operate
one or more plants, which depends on the operating capacity selected
for each plant before the growing season; and (ii) energy and heat
used for cooking the agricultural input, which depends on seasonal
procurement of the agricultural input. Based on prevailing output
prices for the processed food product, the procurement decision of each
plant, and therefore the supply of processed food across all processing
plants in the market, is thus determined by farm product prices and
transportation costs at the individual plant level.
First consider the operating capacity of a representative food pro-

cessing plant. In our interpretation of the problem, the �rm uses capital
and labor to operate a plant, where the size of the plant then provides
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the �rm capacity to process the agricultural input. For a �rm using en-
ergy and raw material inputs to process an agricultural input, the size
of the plant then de�nes its capacity. We assume plant construction
involves a standard Cobb-Douglas production function, with capacity
equal to

BLβKγ,

where β and γ are the usual curvature parameters in the Cobb-Douglas
production function, and where B is a productivity parameter.
Next consider the cooking technology for the agricultural input.

Given a plant of a particular capacity, food processing in many rele-
vant agricultural industries is quite literally a matter of using energy to
heat the agricultural input. At the individual plant level, we therefore
model the food processing sector with �xed-proportions technology.
Let x denote the quantity of agricultural input. Processing a single

unit of the agricultural input is assumed to require 1/α units of energy
e, so that (given a plant of su�cient capacity) output is given by

min(αe, x).

Combining the �plant operation� and �cooking� technologies described
above yields an overall production function for the �rm which depends
on four inputs: energy (e), the agricultural input (x), labor (L), and
capital (K). The production function is assumed to yield an output y,
and takes the form

y = F (e, x, L,K) = Amin{min(αe, x), BLβKγ},

where, in addition to the parameters and variables de�ned above, A is a
productivity parameter. This production function can be seen to allow
for substitution between capital and labor in the operation of the plant,
while the cooking process within the plant relies on Leontief technology,
which we believe captures the nature of the actual production processes
employed by many food processors.

3.2. The Firm's Problem. Now consider the problem facing a price-
taking, pro�t-maximizing �rm operating the production function de-
scribed above and having to deal with the transportation costs of
the agricultural input. Irrespective of the nature of the �rm's pro�t-
maximization problem, all �rms that maximize pro�ts must also solve
the cost minimization problem associated with production.
Given the Leontief technology for converting energy and material

inputs into processed food output, cost minimization implies that the
�rm will choose energy e, the agricultural input x, and labor and capital
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so that

min(αe, x) = BLβKγ.

Because energy is related to the use of the agricultural input via

(1) αe = x,

we have x = BLβKγ.
We are now ready to describe the �rm's decision about how much

labor and capital to employ. Speci�cally, we compute the most e�cient
way to process a quantity of agricultural input x, which solves:

min
L,K

wL+ rK such that x = BLβKγ.

The solution to this problem is to choose

(2)

K =

(
w

r

γ

β

) β
β+γ ( x

B

) 1
β+γ

L =

(
r

w

β

γ

) γ
β+γ ( x

B

) 1
β+γ

.

Given the need to process a quantity x of the input, the total `overhead'
costs of capital and labor for the cost-minimizing �rm can be written

E(x; r, w) =
(
wβrγ

x

B

) 1
β+γ β + γ

β
β

β+γ γ
γ

β+γ

.

This expression provides us with the minimum overhead involved in
operating a plant capable of processing x units of the agricultural input.
We now turn our attention to the question of the cost minimizing way
to produce y units of processed output.
Letting p denote the energy price and q(x) denote the cost of sourcing

x units of the agricultural input, the �rm's cost function is

C(y; p, q, r, w) = min
e,x,K,L

pe+q(x)+rK+wL such that y = F (e, x, L,K).

Noting that this problem is necessarily the same as

C(y; p, q, r, w) = min
e,x,K,L

pe+q(x)+E(x; r, w) such that y = Amin(αe, x),

and since (using the last constraint) x = y/A = αe, we have

C(y; p, q, r, w) =
py

αA
+ q

( y
A

)
+ E

( y
A

; r, w
)
.

Turning �nally to the pro�t maximization problem, we obtain

max
y
vy − C(y; p, q, r, w),
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where v is the price of the processed output. The solution is charac-
terized by the �rst order condition

(3) v =
p

αA
+ q′(y/A) +

(
rγwβ

ABββγγ

) 1
β+γ

y
1−β−γ
β+γ .

The right-hand side of this optimality condition represents the �rm's
marginal cost. Accordingly, this expression characterizes the solution
to the �rm's inverse supply function in the competitive case that is the
focus of our attention here.
Notice that the marginal cost of processed food production depends

on the marginal cost of procurement, q′(x), which in turn depends on
whether the pricing arrangement with growers freight on board (FOB)
destination or uniform pricing (FOB origin). In the case of uniform
pricing, the procurement cost for the processor depends on the spatial
distribution of farms in proximity to the processing plant. Moreover,
because farmers producing primary agricultural products for processed
foods markets tend to co-locate with processing plants in geographic
space, marginal procurement cost under a uniform pricing schedule
depends on the radial distance between the processing plant and the
extensive margin of farm production, which is endogenously determined
by the processing plant.

3.3. Procurement Cost for the Agricultural Input. Equation (3)
gives a solution to the processor's supply conditional on the marginal
cost of procurement, q′(x). Sourcing the agricultural input involves
using a transportation network to move the primary agricultural prod-
uct from the land where it is produced to the processing plant that
receives it. A processing plant that wishes to acquire greater farm
product inputs must procure the agricultural product from greater dis-
tances, and it follows that the marginal cost depends on the spatial
distribution of farms around the processing plant. Thus, when spatial
procurement costs increase over distance from the processing plant,
rising transportation costs over distance result in upwards-sloping sup-
ply for processed food even in the case of constant returns to scale
in the operating capacity of a plant. This section presents a simple
spatial model of procurement on an agricultural landscape around the
processing plant that determines the procurement cost function, q(x).
We conceive the plant as being located in an agricultural landscape,

where the surrounding agricultural land can vary in its productivity
for producing the raw material input. We introduce a productivity pa-
rameter µ to index land productivity. The productivity of agricultural
land near the processing plant determines how much of the raw product
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may be transported from within a given distance to the plant, which
in turn determines the rate at which the processing plant must expand
procurement over distance to increase its output level.
We next need to put some structure on the space within which the

�rm makes its location decision. The simplest structure for farm prod-
uct procurement locates agricultural land on a plane in a Hotelling-like
locational space centered around the processing plant, so that plants
source tomatoes from a circular area.3

Suppose transportation costs for delivering the raw product to the
processing plant are increasing in the distance between the processing
plant according to a quadratic transportation technology. In particular,
the cost of hauling a single ton of tomatoes m units of distance from
the farm gate to the processing plant is given by

τ0 +
τ1

2
m+

τ2

3
m2.

The ��xed cost� τ0 can be thought of as time required to load, grade,
and unload the processing tomatoes at the plant, all of which are in-
dependent of the distance m. The second parameter τ1 captures costs
which are linear in the distance traveled, for instance fuel costs. The
third parameter τ2 governs the quadratic term, which we motivate by
noting that travelling more miles increases the probability of encoun-
tering tra�c congestion.4 It may also be the case that the handful
of tomato processors in California are su�ciently large that they face
an upward-sloping supply curve for drivers of the specialized tomato
gondola trailers used in the industry.
A given processor faces the cost of moving tomatoes from an entire

region of production. We de�ne this region by supposing that a given
processing plant sources all the tomatoes within a distance m̄. Then
the cost of transporting all the tomatoes in this region is given by the
expression

µ

∫ m̄

0

(
τ0 +

τ1

2
m+

τ2

3
m2
)
dm = µ

(
τ0m̄+ τ1m̄

2 + τ2m̄
3
)
.

The distance traveled to procure loads of the farm input is incidental
to the problem facing the food processor of sourcing x units of the
primary agricultural product. Instead, the distance m̄ is endogenous
to the food processor and determined by its demand for the input x;

3We have also calculated solutions to the model when the input is sourced from
locations on a Hotelling line, which produces qualitatively similar results.

4During the busy harvest season tra�c on the two-lane highways of the Central
Valley is often delayed by the large number of tomatoes being moved about, just
as tra�c in Napa Valley is delayed some months later during the grape crush.
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thus, we write m̄(x). If the uniform price paid to growers per ton of
tomatoes is q0 then the total cost of sourcing and transporting x tons
of tomatoes is given by

(4) q(x) = q0x+ τ0m̄(x) + τ1m̄(x)2 + τ2m̄(x)3,

while the corresponding marginal cost is given by

(5) q′(x) = q0 + τ0m̄
′(x) + 2τ1m̄(x)m̄′(x) + 3τ2m̄(x)2m̄′(x).

3.4. The Agricultural Space. We consider agricultural product pro-
curement on a plane in which a food processor sources all tomatoes
within a distance m̄ from a circle having area πm̄2. In this case we

have m̄(x) =
√

x
πµ
. Notice that food processing creates agglomeration

economies, as a greater density of farmland around the processing plant
devoted to growing the processed input reduces procurement cost at
the plant by reducing the travel distances required to procure a given
quantity of the primary agricultural product.
Substituting this relationship into our speci�cation of transportation

cost gives us the cost function and its �rst and second derivatives:

(6) q(x) = q0x+
τ0

√
x

√
πµ

+ τ1
x

πµ
+ τ2

(
x

πµ

)3/2

,

(7) q′(x) = q0 +
τ0

2
√
πµx

+ τ1
1

πµ
+ τ2

3
√
x

2πµ
√
πµ

,

while the second derivative of the cost function is

(8) q′′(x) = − τ0

4
√
πµx3

+ τ2
3

4πµ
√
πµx

.

Notice that even in the case in which processing plants are competi-
tive and operate constant-returns-to-scale production technologies, the
need to source tomatoes at increasing costs over distance seen in (8)
implies that supply curves are not perfectly elastic. Put di�erently,
ownership of the scarce land factor creates rents to land owners that
materialize over distance from the processing plant, while ownership
of plants with capacity to process additional agricultural output is a
scarce factor that generates a Ricardian (quasi) rent. In this case, the
uniform pricing employed within the tomato processing industry im-
plies that rents accrue to the owners of land within a distance m̄ of the
processing plant.
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4. Empirical Analysis

In this section, we illustrate how the model and spatially indexed
cost function can be used to estimate the supply elasticity for tomato
processors in California. We use actual production data provided to us
for three California tomato processing �rms to estimate parameters of
our production model and then use equation (10) to calculate the elas-
ticity of supply at the plant level for processed tomatoes in California.

4.1. Data. Our data consist of highly detailed cost information and
weekly load procurement data from a sample of California tomato pro-
cessors. We rely on the farm-level load data supplied by California food
processors to estimate spatial material procurement relationships nec-
essary to calculate the supply elasticity for the processing tomato indus-
try. Our proprietary data from three tomato processing �rms in Cali-
fornia include: (i) monthly records of revenue and quantity shipped; (ii)
detailed data on inventory and costs including raw material procure-
ment costs; (iii) energy costs; (iv) transportation costs; and (v) labor
costs. Our data on procurement and transportation costs comes from
three processing plants operated by a single �rm; it is highly granular
at the level of individual loads between farmers and processing plants,
including the distance shipped.
Table 1 shows summary statistics of the revenue and cost data pro-

vided by the �rms. Transportation costs are converted into a basis of
dollars per ton mile by dividing shipment cost by weight and distance
for each load. Transportation costs for raw tomatoes, on average, are
$0.17 per ton mile. The average plant produces 724 million pounds of
tomato paste from processing tomatoes that are sourced an average of
58.95 miles away.

Table 1. Summary Statistics

Variable Parameter Mean Std. Dev.
Average Transport Costs (per ton per mile) � $0.17 $0.10
Average Transport Distance (per load) m̄/2 58.95 miles 32.26
Raw Tomato Quantity Purchased (tons) x 1.4 million 0.8 million
Annual Labor Expenditures ($ thousands) wL $17,665 23,274
Annual Capital Expenditures ($ thousands) rK $6,917 6,079
Quantity of Output (pounds) y 724 million 595 million
Price of Output (per pound) v $0.33 0.03
Lbs of paste per ton of tomatoes A 368.2 �
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We use these data to estimate parameter values and then calculate
an elasticity of supply for processed tomatoes in California. To es-
timate transport costs (the τi parameters) and the land productivity
parameter (µ), we use detailed data from three processing plants (in
a single �rm) over three years (2010�2012) on all loads of raw toma-
toes purchased from farms and transported by truck to the processing
plants. Our �rm data also provides the average price per ton of raw
tomatoes (q0) while we use data from USDA to calculate the parameter
A.

4.2. Returns to Scale in Plant Operation. The expression for the
long-run supply elasticity is greatly simpli�ed if the tomato process-
ing plants utilize a constant returns-to-scale production technology for
plant operation so that β + γ = 1. Interpreting the plant's operation
through the lens of our model makes this interpretation plausible. Re-
call that our model decomposes the process of �cooking� the agricultural
input from the employment of capital and labor inputs for operating
a plant at a given nameplate capacity, so that the production function
we're immediately concerned with is just the operation (and amortized
cost of construction) of a facility that can apply heat and pressure to
raw material (up to this capacity) to make tomato paste.
We corroborate this intuition by estimating the Cobb-Douglas pro-

duction function with no restriction on β and γ using the cost and
production data provided by the �rms. Our sample size is small (39
observations), because our monthly production data is limited to hav-
ing observations from only 3�4 months each year at each plant.5 Based
on that regression, our estimate of β + γ is 0.928 (std. error = 0.106),
yielding a 95% con�dence interval of [0.71, 1.14].6 Thus, we fail to re-
ject the hypothesis that β + γ = 1, and we accordingly proceed under
the assumption of a constant returns-to-scale production function.

4.3. Estimating the Transportation Cost Function. The input
cost function, q(x), consists of two parts: (i) the price per unit paid by
the processor to procure the raw tomatoes (q0); and (ii) the transport
costs of raw tomatoes to the processing plant. We take q0 to simply be
the average price per ton paid to growers in 2012, which is $58.95.
To estimate the parameters τi in the function describing the trans-

port cost per ton of raw tomatoes as a function of distance, we utilize

5The data are comprised of 2 plants that operate for 4 months of the year over
the period 2010-2012 and a third plant that operates 3 months of the year over the
period 2009-2013.

6Full results are available in the Table 1A in the Appendix.
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data provided for every truckload of tomatoes transported over a three-
year period (2010-2012) for three tomato processing plants operated by
a single �rm. This data includes the total transport cost for each load,
the weight of each load, and the distance the load was transported.
Table 2 shows the results of a quadratic model regressing transport

cost on distance to estimate the coe�cients (τ0, τ1, τ2) in our expression
for the (per ton) transport costs τ0 + τ1

2
m+ τ2

3
m2.

Table 2. Regression Results on Raw Tomato Transport
Costs per Ton. Standard errors in parentheses.

Variable (1) (2)
Intercept (τ0) 2.300∗∗∗ 2.350∗∗∗

(0.003) (0.005)
(Miles To Plant)/2 (τ1) 0.202∗∗∗ 0.197∗∗∗

(0.000) (0.000)
Miles2/3 (τ2) � 5.397e-5∗∗∗

(3.84e-6)
N 387,468 387,468
R2 0.926 0.926
∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001

We estimate two di�erent speci�cations of the transport cost func-
tion, one the general quadratic speci�cation assumed above, and one
which restricts transport costs to be linear. The quadratic term esti-
mated in column (2) of Table 2 is highly signi�cant and of the expected
sign, but explains little additional variation in transport costs relative
to the linear speci�cation. Either speci�cation suggests that trans-
portation costs for raw tomato loads include a �xed cost component
(τ0) of about $2.30 per ton, and a linear term (τ1) of about $0.20 per ton
mile. The quadratic term indicates that transportation costs increase
at a greater than linear rate with τ3 estimated to be about 5.4e-5.7

Total cooking cost for the processing plant depends on the �xed
cost of acquiring raw processing tomatoes basis (q0), the transportation

7Because τ1 depends on things like fuel costs one might be concerned that τ1
is time-varying. As we are estimating a static model our τi estimates are based
on a weighted average of fuel costs and other factors which vary over the time
period analyzed. To consider the importance of variation in fuel costs over the time
period analyzed, we also estimated the regression in Table 2 using interactions of
year dummies with τ1 so that we get separate estimates for each year 2010�2012.
Estimates of the parameter varied by less than 3% across years (ranging from 0.195
to 0.201).
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cost per ton mile (the τi), and the land productivity parameter (µ) to
account for the spatial distribution of loads in proximity to the plant.
The remaining parameter we need is the land productivity parame-

ter µ. In principle this can be obtained from the relationship between
observed total input x and the greatest distance tomatoes are trans-
ported, m̄. In practice, using the actual observed greatest distance may
introduce error (since we're estimating this key parameter from a single
observation). A better approach is to note that in our model m̄ will
simply be equal to twice the average miles driven. In our data the av-
erage transport distance is 58.95 miles, implying a value of m̄ = 117.9
miles.
From the relationship m̄ =

√
x
πµ

we have µ = x
πm̄2 , which corresponds

with the total input sourced divided by the area of a circle of radius
m̄. This gives a value of approximately 128.24 tons per square mile, or
0.20 tons per acre. In interpreting this �gure one should recall that µ
will depend both on yields (e.g., tons per planted acre) as well as the
proportion of acres planted. With processing tomato yields somewhat
less than 50 tons per acre in California, this implies that about half a
percent of land within the stylized circular catchment area would be
planted to processing tomatoes.8

Finally, we calculate the parameter A (pounds of output per ton of
input) by using the conversion ratio from fresh (farm) weight using a
factor of 5.432 for pounds of tomatoes to make one pound of tomato
paste (USDA-NASS). This implies a value of A equal to 368.2 when
converting tons of processing tomatoes into pounds of tomato paste.
Putting together our estimates of q0, µ, and the τi parameters of the
transportation cost function allows us to specify the input cost function
as (using (6))

q(x) = $58.95x+ $2.965
√
x+ $0.321x+ $0.000108x3/2.

4.4. Estimated Supply Elasticities. A central goal of this paper is
to express the elasticity of the supply curve for processed tomato prod-
ucts in a form that allows us to consider the impact of changes in the
costs of transportation (i.e., the parameters of the transportation cost
function) on the supply of tomato paste. Noting that the processor's
technology is consistent with constant returns to scale, then the �rst-
order conditions from the processor's problem (3) equating marginal

8The total area of the 19 counties with harvests reported by NASS for 2021 was
37,415 square miles, while the total harvested area was 356 square miles, so this is
the right order of magnitude.
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Figure 1. Input Cost Function. A shaded area (too
small to be visible) indicates pointwise 95% con�dence
intervals.

cost to price de�ne the �rm's inverse supply curve,

v =
p

αA
+ q′(y/A).

Di�erentiating this expression with respect to y and exploiting the
inverse function theorem allows us to assert that ∂y/∂v = A/q′′(y/A),
so that the price elasticity of the supply function takes the form

(9) εv =
vA

q′′(y/A)y
.

Now we can make use of q′′ calculated above for the case of farm product
procurement on a plane. Doing so, we obtain an expression for the
elasticity

(10) εv =
v4(πµ)3/2

√
y/A

3τ2y/A− τ0πµ
.

Notice that the �xed costs of transport involving τ0 play an impor-
tant role in the elasticity of processed food supply. When these �xed
costs are high (approaching 3τ2y/A), supply approaches being perfectly
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elastic. 9 Fixed costs of loading and unloading farm products can thus
profoundly impact pass through rates in the food sector, resulting in
higher consumer incidence of commodity price shocks on food prices
when �xed costs of transport rise in upstream farm product markets.
Quadratric transportation costs have the opposite e�ect, as higher val-
ues of τ2 make processed food supply less elastic, reducing pass through
rates of commodity price shocks into consumer food prices. For exam-
ple, if quadratic transportation costs arise through road congestion or
due to capacity constraints on specialized trailers used to haul agri-
cultural products, then relaxing these constraints through public road
improvement projects and private investment would increase the elas-
ticity of processed food supply, raising pass through rates in consumer
food markets.
Perhaps surprisingly, the linear costs of transportation have no e�ect

on the supply elasticity, which implies, among other things, that the
supply elasticity of processed food does not depend on diesel fuel prices
in the transportation sector. Changes in the linear transportation cost
parameter thus shift the level of processed food supply but have no im-
pact on the supply elasticity. This outcome has important implications
for energy policy, as policies such as carbon taxes that raise fuel prices
result in level e�ects on the supply of processed foods without changing
pass through rates of increased farm prices into consumer food prices.

4.4.1. Elasticity Estimates. Collecting values of the estimated param-
eters in the Tables above and incorporating them in equation (10)
provides our estimate of the long-run supply elasticity for processed
tomato paste.
Our results have several implications for the e�ect of agricultural

commodity price shocks on consumer prices for manufactured foods.
First, empirical models of price pass through in food markets that fail
to account for changes in the transportation sector that occur con-
currently with changes in agricultural commodity prices may be mis-
speci�ed. Second, because our estimated supply elasticity of tomato
paste is considerably less elastic than previous estimates of the resid-
ual supply elasticity of processing tomatoes in the farm sector, our
results suggest that food processors play an important role in damp-
ening food price in�ation, as the incidence of food price shocks in the
farm sector on consumer food prices falls with inelastic supply. Third,
because changes in transportation costs that are linear in distance have
no a�ect on the elasticity of procesed food supply, the tax incidence of

9The case in which the elasticity actually �ips to being negative can be ruled out
so long as the processor can exit.
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Figure 2. Supply Elasticity. The dotted line indicates
average output. At this level of output elasticity is equal
to 2.91. The shaded area provides a pointwise 95% con-
�dence interval.

energy policy such as carbon taxes that raise fuel prices does not have
corrollary e�ects on changing the incidence of commodity price shocks
on manufactured food prices. Finally, disruptions in the food supply
chain caused by pandemics and natural disasters have the potential to
alter �xed and quadratic transportation cost components of raw prod-
uct procurement for food processors, resulting in essential implications
for the consumer incidence of commodity price shocks in agricultural
markets that have the potential to exascerbate food price in�ation.
For non-competitive market structures, inverse supply can be inter-

preted instead as the marginal cost function for the processing �rm,
generating implications for backwards pass through as well. Back-
wards pass-through, which can occur when processing plants have bar-
gaining power in setting the annual contract price to growers, depends
on curvature of the marginal cost function. Our estmated marginal
cost function is concave, which suggests the potential for greater than
one-to-one pass-through of tomato paste prices into processing tomato
prices in the upstream farm product market. Moreover, while farm-
gate prices do not impact the supply elasticity in the case we consider
here, one could relax the assumption of perfectly elastic supply of the
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raw farm output (tomatoes), which would allow the farm price to vary
with the procurement level to re�ect varying opportunity costs of land.
We suppress this consideration here to focus the model on the e�ect of
changes in transportation cost on processed tomato supply. On their
own, these transportation costs su�ce to make competitive �rms' sup-
ply curves upward sloping, a result that stands in sharp contrast to the
textbook case in which a competitive �rm with a constant returns to
scale production technology has perfectly elastic supply. Here, because
the marginal cost of sourcing tomatoes across space is increasing over
distance, �nearby tomatoes� available for procurement will always be a
scarce factor.

4.5. Transportation Cost Elasticities. So far, we have constructed
estimates of the supply elasticity with respect to the price of output
v, and we can see how this elasticity depends on parameters of the
transport cost function. This relationship is interesting because it sheds
some light on ways in which we might expect the supply of tomato
paste (and related products) to be a�ected by disruptions to transport
or logistical issues that a�ect raw material procurement. However,
a more direct question involves the elasticity of supply with respect
to the transportation cost parameters. We explore this in this section,
constructing expressions for elasticities with respect to each of the three
transport-cost parameters.
We obtain these elasticities by recalling that the �rst order conditions

for the �rm imply that v = p
αA

+q′(y/A). Then by the envelope theorem
we have 0 = (∂q′(y/A)/∂τi)(∂y/∂τi)/A for i = 1, 2, 3, which allows us
to solve for the partial derivatives ∂y∂τi via implicit di�erentiation.
Further, note that the elasticity (∂y/∂τi)(τi/y) = (∂x/∂τi)(τi/x). Then
calculation of the relevant elasticities simply involves substituting the
expression for q′ into the �rst order conditions, and di�erentiating with
respect to the parameter of interest.
These elasticities are given by:

τ0: ετ0 = 2πµ
πµ−3(τ2/τ0)y/A

.

τ1: ετ1 =
4(τ1/τ0)

√
πµy/A

πµ−3(τ2/τ0)y/A

τ2: ετ2 = 6(τ2/τ0)(y/A)
πµ−3(τ2/τ0)(y/A)

Figure 3 shows the value of these elasticities for variation in output.
The shaded areas are pointwise 95% con�dence intervals (all three elas-
ticity curves have these, but the intervals are too small to be easily
visible in two cases). Changes in �xed costs have a negligible e�ect
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on supply at all output levels, while the negative impact of unit trans-
portation charges on supply is larger when processing plants operate
at relatively low output levels.
The transportation cost elasticities have important implications for

the e�ect of energy policy on consumer food prices. While these e�ects
are expressed in terms of the output e�ects of changes in transportation
costs on manufactured food supply, the implication of energy policy on
consumer food prices is clear. Changes in �xed costs of transportation
τ0 have virtually no e�ect on the supply of processed food products
apart from changing the elasticity of processed food supply. Thus poli-
cies that a�ect �xed loading and unloading costs of agricultural prod-
ucts have no independent e�ect of food price in�ation. In contrast,
policies such as carbon taxes that raise fuel prices can result in large
reductions in the supply of processed food, particularly in cases where
processing plants operate at low capacity. In cases of relatively inelas-
tic demand for manufactured food products in the consumer market,
an elastic response of food supply to changes in fuel prices can result
in sharp output reductions for processed foods, potentially increasing
food price in�ation in ways not accounted for in models of tax incidence
that focus exclusively on fuel markets.
An interesting feature of these elasticities is that they depend on

the transport cost function only via the ratios of parameters τ1/τ0 and
τ2/τ0. The ratio τ1/τ0 can be thought of as the ratio of the linear costs
of transporting a load of tomatoes per mile to the �xed cost of hauling
the load. Those �xed costs, in turn, are more dependent on labor costs
than costs related to actual travel (e.g., gasoline). The value of the ratio
(just plugging in estimates from Table 2) is about 0.84. The second
ratio τ2/τ0 can be thought of as the ratio of quadratic cost elements
to �xed costs, an e�ect that can be driven by road congestion costs.
But while this ratio is signi�cantly greater than zero, it is still rather
small, adding only about 7 cents to the cost of transporting a ton the
average distance of about 59 miles, and adding only about 32 cents to
the per-ton cost of transporting the farthest distances.

5. Conclusion

In this paper we have constructed a model to estimate changes in
food processing supply that accounts for spatial procurement costs.
Processing plants are conceived to be located in an agricultural land-
scape in which the surrounding agricultural land produces a primary
agricultural product for the processing sector by farmers who are spa-
tially located around each processing plant. Higher processing costs
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Figure 3. Supply elasticities with respect to parame-
ters of transport cost function. At the average level of
output (742 million lbs) these elasticities are respectively
−0.001, −2.834, and −2.009. Shaded areas indicate 95%
con�dence intervals.

result in lower farm prices for the input, contracting the radius of de-
liveries to the processing plant, and we characterize how the change in
spatial procurement alters the marginal cost of food processing.
We �nd that the spatial distribution of primary agricultural products

a�ects the price elasticity of processed food supply, with greater land
productivity and greater plant capacity making processed food product
supply more elastic. Higher transportation costs for the primary agri-
cultural product also alter the supply elasticity of processed foods, with
higher �xed costs of delivering loads resulting in more elastic processed
food supply, and greater road congestion resulting in less elasticity pro-
cessed food supply. Perhaps surprisingly, changes in unit transporta-
tion costs over distance, for instance due to changes in diesel fuel prices,
have no impact on the supply elasticity of processed foods, though they
do have a direct negative e�ect on both purchases of the agricultural
input and processed outputs such as tomato paste by changing the level
of supply.
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Using detailed production and procurement data from the process-
ing tomato industry in California, we estimate the long-run price elas-
ticity of tomato paste supply to be 2.91. We also derive elasticities
with respect to the various transportation cost parameters representing
changes in �xed (loading) cost, unit and quadratic cost components.
These results demonstrate the important role of the transportation
sector in determining output and price e�ects of in a food processing
sector that relies on the spatial procurement of farm products as a
material input for production. Further research is needed to identify
how shocks in the transportation sector a�ect the price of manufac-
tured food products in vertical food markets that have the potential
for imperfectly competitive price adjustment.
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Appendix A. Appendix

A.1. Estimation of Production Function. In this appendix, we
provide results from estimating a production function based on monthly
production data (production occurs seasonally from July to October)
from three �rms over several years. The monthly �rm-level data in-
cludes output, labor expenditures, and capital expenditures. Produc-
tion from two of the three �rms runs from July to October, and our data
includes years 2010-2012 for each �rm. The third �rm operates from
July to September and provided data from 2009-2013. We therefore
have 39 monthly observations across the three �rms. Because capital
expenditures occur in advance of production, we aggregate all capital
expenditures from the end of the previous season to the beginning of
the new season to create the baseline level of capital for the year. Then
we adjust this baseline each month during the production season based
on additional expenditures.
We assume that the parameters of the Cobb-Douglas production

function are the same across all tomato processing �rms and that w
and r are constant across the time period in the sample. Therefore, we
use labor expenditures and capital expenditures in a regression to �nd
the best �t production function:

log(y) = log

(
B

wβrγ

)
+ β log(wL) + γ log(rK) + ε.

This regression yields values for β, γ, and B̂ = B
wβrγ

.
The estimate of β + γ is 0.928 (std. error = 0.106), yielding a 95%

con�dence interval of [0.71, 1.14]. Thus, we fail to reject the hypothesis
that β+ γ = 1, a constant returns-to-scale production function. These
outcomes are shown in Table A1.

Table A.1. Production Function Estimation

Variable Coe�cient (Std. Error)
log
(

B
wβrγ

)
11.13∗∗∗

(0.875)
β 0.680∗∗∗

(0.139)
γ 0.248∗

(0.109)
N 39
R2 0.681
∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001
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A.2. County-level Production Statistics for 2021. The following
table reproduces production statistics from USDA National Agricul-
tural Statistics Service (2022a), adding information on the area (in
square miles) of the corresponding counties. �Other counties� in the
table are San Benito and Santa Clara counties.

Table A.2. Processing tomato production by county in 2021

County Planted
Acres

Harvested
Acres

Yield Production Area (sq.
Miles)

%Area

Imperial 300 300 26.2 7870 4175 0.01
Tulare 700 700 71.3 49900 4824 0.02
Other Counties 700 700 49.7 34811 2680 0.04
Butte 700 700 26.0 18200 1640 0.07
Glenn 1100 1100 46.4 51000 1315 0.13
Kern 8000 8000 56.4 451000 8142 0.15
Madera 3700 3700 47.2 174600 2138 0.27
Contra Costa 2600 2600 64.7 168200 720 0.56
Sacramento 4500 4500 36.4 163900 966 0.73
Stanislaus 7200 7000 48.2 337700 1495 0.73
San Joaquin 16100 14900 43.7 650700 1399 1.66
Colusa 13400 13200 49.5 652900 1151 1.79
Solano 9500 9500 54.1 513700 828 1.79
Merced 24900 24900 46.5 1157000 1929 2.02
Sutter 12000 12000 45.0 539400 603 3.11
Kings 29900 29800 46.9 1396000 1390 3.35
Yolo 31800 31700 49.7 1576000 1012 4.89
Fresno 62900 62700 45.2 2832000 1008 9.72
Total 230000 228000 47.3 10774881 37415 0.95
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