- Main
Integrating Language Information With a Hidden Markov Model to Improve Communication Rate in the P300 Speller
Published Web Location
https://doi.org/10.1109/tnsre.2014.2300091Abstract
The P300 speller is a common brain-computer interface (BCI) application designed to communicate language by detecting event related potentials in a subject's electroencephalogram (EEG) signal. Information about the structure of natural language can be valuable for BCI communication systems, but few attempts have been made to incorporate this domain knowledge into the classifier. In this study, we treat BCI communication as a hidden Markov model (HMM) where hidden states are target characters and the EEG signal is the visible output. Using the Viterbi algorithm, language information can be incorporated in classification and errors can be corrected automatically. This method was first evaluated offline on a dataset of 15 healthy subjects who had a significant increase in bit rate from a previously published naïve Bayes approach and an average 32% increase from standard classification with dynamic stopping. An online pilot study of five healthy subjects verified these results as the average bit rate achieved using the HMM method was significantly higher than that using the naïve Bayes and standard methods. These findings strongly support the integration of domain-specific knowledge into BCI classification to improve system performance and accuracy.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-