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ABSTRACT OF THE DISSERTATION

Performance Limitations of Linear Systems over Additive White Noise Channels

by

Yiqian Li

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2011

Dr. Jie Chen, Co-Chairperson
Dr. Ertem Tuncel, Co-Chairperson

This thesis develops a framework to address the performance limits of feedback con-

trol systems with communication constraints modeled by additive white noise channels.

By searching for the fundamental bounds on the control performance, we explore the rela-

tionship between the known limitations caused by the intrinsic properties of linear control

systems and the characteristics of the communication channels. We analyze multiple-input

multiple-output systems with the channel placed at either the uplink or downlink. We also

study the stabilization conditions for single-input single-output systems when both channels

are present in the closed loop.

For systems with uplink channels, we derive explicitly the analytical expressions for

the necessary and sufficient conditions for stabilization and the best achievable performance

under the channel input power constraint. The optimal tracking performance exhibits clear

dependence on the power constraint and noise levels of the channel, and additionally on

the unstable poles and nonminimum phase zeros of the plant. For systems with downlink

channels, we derive a lower bound for the performance that incorporates the plant gain in

vii



the entire frequency range. Moreover, we use and optimize scaling as a method of channel

compensation to exploit the channel and deal with the white noise. This simple strategy

is shown to significantly improve the tracking performance. Also, we attempt to discover

the optimal power allocation for each of the uplink parallel channels to achieve the best

tracking performance. It is shown that, the optimal strategy is to allocate more power to a

more problematic channel, in contrast to the widely-known “water-filling” solution, which

is to maximize the capacity. Lastly, for first-order systems controlled over both uplink

and downlink channels, we analyze the achievable region of the signal-to-noise ratios of the

channels for stabilizability.
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Chapter 1

Introduction

1.1 Background

The control theory deals with how to compensate dynamical systems, so that they

can generate desired response and have “self-adjustment” capability to the changes in the

environment. The theory that we are most familiar with has an underlying assumption

that the communications between components are ideal and synchronous. In other words,

the systems are supposed to transmit as much information as they need perfectly and with

a known, fixed delay. These simplifications are reasonable in most applications, allow the

theory to focus on the inner structure of the systems while simplify controller synthesis,

and have helped it develop, thrive, and be successfully engineered.

The assumption of perfect communication is reasonable when the real components of

the systems are placed closely and connected by a dedicated network; it is usually the best

choice and a must when the system demands high and precise performance. However, for

large scale systems such as power systems, systems using mobile sensor networks, or remote
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control, the communication effects can no longer be neglected. Furthermore, as information

and networking technology prevail, building networked control systems (NCS’s) is possible

and appealing, especially in some consumer or commercial applications where low cost and

robustness of data networks overweigh the sacrifice of the absolute high performance.

In contrast to standard control systems, a conceptual yet typical configuration of NCS’s

is shown in Figure 1.1. The operations of the sensors, plants and controllers of such systems

are coordinated through networks subject to various communication constraints, and they

are likely to become bottlenecks in the control performance. The interplay of control and

communication is the central theme of the developing theory of NCS’s.

The research on NCS’s has been attracting a great deal of efforts and leads to a new

interdisciplinary area between control theory and information theory, as evidenced by the

special issue [3]. The overview of recent development of NCS’s can be found in survey

papers, e.g. [30, 31], with the latter more focusing on network delay and packet dropouts.

1.1.1 Challenges

Due to the differences between control and communication/information theory, NCS’s

pose unique challenges unexplored in the past. In essence, communications theory aims at

point-to-point reliable transmission and the control theory, in contrast, focuses on effective

utilization of information: the data are to be used in a feedback loop. Also, in communi-

cation or information theory long delays are tolerable: the inequalities and tight bounds

usually require coding with arbitrarily long block lengths [20]. On the other hand, time

delays severely depreciate performance and stability of unstable systems in control theory.

It is true that control systems can be robust to the variations modeled in the design process,

2



Controller Plant
r

(a) Standard control systems

Controller Plant

Network N2

Network N1

r

(b) Networked control systems

Figure 1.1: Key differences between generic networked control systems and standard control

systems

but they cannot tolerate complex communication limitations.

First, signals sent through a digital channel must be quantized. Although under high-

rate conditions, a quantizer can be modeled as additive noise channel [29], the pioneering

work [21] shows that this model cannot be used to rigorously analyze feedback control

systems. Quantization is inherently nonlinear and current standard control theory can-

not directly address such nonlinearity. Second, the communication channels can have only

limited capacity constraints, which means that only a finite alphabet of data can be trans-

mitted. This effect limits the information available to control and thus brings about a

fundamental tradeoff between the data-rate and the control performance. Thirdly, delays

(possible random) always come together with data transmission. Besides the transmission

delay, for example, in a packet-based data network, when packets drop happens, they are

3



typically re-send or rerouted to their destination, causing waiting time delays. And random

delays are unaccounted for in conventional control machineries. In summary, unlike stan-

dard control system, NCS’s present critical challenges that will consequently necessitate an

inevitable tradeoff between communication characteristics and the system’s performance.

As a result, several fundamental control concepts will no longer fit in the networked

environment. The most notably loss will be the theory of linear time-invariant (LTI) sys-

tems, since we consider the highly nonlinear communication channels. However, for additive

noise channel, the linearity can be preserved and standard control tools can be used, base

on which a line of research originates (e.g. [8]). In the thesis, we are also going to take

advantage of the simplicity of this channel model. Another idea for preserving the control

techniques is the “sector-bound” approach, which is used on a logarithmic quantizer [28].

A rich set of tools for robust control can make the transition to address quantization with

the aid of the model, see e.g. [50].

New and daunting difficulties notwithstanding, there have been significant process in

studying NCS’s and we will partially review the existing results in the following section.

1.2 Literature Review

One of the goals of studying NCS’s, besides search for a clear understanding of the

relationship between control and communication, is to have a general design methodology

which can apply to a possibly large system, with multiple sensors and agents connected

through complex network topology. However, as a first step, it is best to simplify the

problem as much as possible. A single plant, and a sensor and controller connected by a

4



simple channel model has been adopted by many researches in this area, and significant

progress has been witnessed in recent years. This centralized feedback control will also be

our focus in this section and throughout the thesis.

1.2.1 Control with quantized feedback

We consider systems connected with digital noiseless channels in the uplink. The uplink

is referred to the feedback path in the system, as “Network N1” in Figure 1.1b. Since the

channel is digital, any continuous-valued measurements or signal must be first quantized.

The quantization is usually included in the coding process as is shown in Figure 1.2. We

shall consider in this subsection only static and memoryless quantizers, i.e., the range and

levels of the quantizer is predetermined and not time-varying. Quantization inevitably

causes information loss and affects the control system. Traditionally in signal-processing

and some control literature, the quantizers are modeled as additive noise channels under

high-rate condition. However, Delchamps [21], as one of the first researchers that rigorously

analyzed quantization in control, showed that quantizers with finite quantization levels

cannot asymptotically stabilize a linear system in general. Intuitively, as any two state

values in the quantization block that contains the origin are indistinguishable, the unstable

dynamics moves any nonzero initial state in that block away from the origin until it reaches

another quantization block. Even if the control makes the state move towards the origin

again, a repeated cycle will result. Thus, the state can never converge to the origin. It holds

true even if the control action has memory for the past quantized state. This pioneering work

implies that to achieve stability, the coding/quantizer must be more complex than a finite

static and memoryless one. It thus activated a stream of work pursuing quantization/coding

5



Coder Channel Decoder

Figure 1.2: Generic network model

rules that can achieve certain control objectives.

The work [23] considered logarithmic quantizers and showed that asymptotic stability

could be achieved for LTI discrete time systems. Such quantizers have infinite levels and

increasing density of levels toward the origin. It was also shown that it is the most efficient

(coarsest partition) static memoryless quantizer to quadratically (in Lyapunov sense) sta-

bilize a single-input single-output (SISO) unstable plant among all control laws. If we let

parameter ρ denote the density of the partition of the quantizer (the smaller ρ is, the more

efficient the quantizer), then it turns out the coarsest density is given by

ρ∗ =

∏l
i=1 |pi| − 1

∏l
i=1 |pi| + 1

where pi, i = 1, . . . , l are the unstable eigenvalues of the system. Furthermore, a noticeable

advantage of the logarithmic quantizer is that it can be treated non-conservatively as a

sector-bound uncertainty on the input [28], and thus the quantized feedback system can be

reformulated as an LTI system with a static sector-bounded uncertainty, whose bound is

related to the quantization density. By showing this, not only the results can be generalized

to multiple-input multiple-output (MIMO) systems (conservatively) but also tools of robust

control can be applicable to quantization related networked control problems [50].

6



1.2.2 Control with limited data-rate

This line of research is also concerned with connecting system via digital noiseless

channel, but with limited data-rate R. The data-rate is defined as

R , log2 M (bits/channel use),

where M is the cardinality (number of elements) of the channel input alphabet. A signif-

icant question is: what is the lower bound on R below which it is impossible for a plant

to be stabilized (in some sense), by any encoder and decoder/controller? We have seen

that memoryless quantizers with finite levels cannot asymptotically stabilize a LTI system

in general, hence to search for a fundamental bound on the limited data-rate, we allow

the coder/quantizer to have evolving parameters and unrestricted memory, with the only

constraint being causality.

Nair and Evans [45] show that a linear state-space discrete-time systems can be asymp-

totically stabilized if and only if the channel’s data rate R satisfies the bound

R > H, (1.1)

where

H ,
∑

log2 |λi| (1.2)

in which λi is the unstable eigenvalue of the linear system. Earlier, the same authors

have discovered similar bounds for noiseless autoregressive moving average systems [44]. As

a generalization, the inequality (1.1) is also tight for observability, in the sense that the

system’s state can be reconstructed approximately based on quantized information [64]. A

common technique of designing these rate-achieving quantizers is dynamic scaling/zooming

7



used in, e.g. [10]. The range of the quantizer can adaptively zoom-in or zoom-out, according

to the distance of the plant state to the target. Furthermore, the same results are shown

to hold true for the mean square stability (MSS) of stochastic systems, even if the process

and measurement noise have unbounded support [46]. Serving as a fundamental limit

valid over any coding strategy, the bound (1.2) bears no relation to the system’s input and

output, depending only on the autonomous part of the system. It is named intrinsic entropy

rate [47, 57] and represents the degree of instability of the plant, or a measure of the rate

at which a unstable linear plant can generate information.

1.2.3 Control over additive white noise channels

A typical analog communication channel is the additive white noise (AWN) channel

depicted in Figure 1.3. AWN channel has continuous input and output alphabet as R. The

channel output w is the sum of the input u and the noise n. The noise is drawn i.i.d. from

a given distribution with zero mean and variance Φ. And the noise is independent of the

input u. Without any further constraints, the capacity of this channel is infinite. The effect

of the noise can be made arbitrarily small by increasing the power of the input and thus

the channel practically imposes no communication constraint. To properly model an analog

transmission media, it is customary to limit the channel input u to a finite instant power,

E{u2} ≤ Γ. If we assume the distribution of the noise is Gaussian and the channel operates

on discrete time, then a well-known fact is that the capacity of the then called additive

white Gaussian noise (AWGN) channel is [20]

C =
1

2
log2

(

1 +
Γ

Φ

)

.
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+
u

n

w

Figure 1.3: Additive white noise channel

Hence, the power constraint translates into one on the signal-to-noise ratio (SNR) and then

into one on channel capacity. More importantly, the use of the AWN channel preserves the

system’s linearity, thus rendering the control analysis and design problems more amenable

to conventional tools drawing upon linear systems theory. It can be further extended to

accommodate colored noise and channel bandwidth, by introducing appropriate filters in

the noise and signal path, respectively. Furthermore, AWGN channel model is a building

block for many wireless channels [66].

We illustrate here a motivating example which is drawn from the paper [22]. The

configuration is shown in Figure 1.4. A first-order scalar unstable system must be stabilized

over an AWGN channel where the Gaussian noise is zero-mean and has variance Φ. We

wish to find the minimum power of u over all stabilizing controllers1. This is a special linear

quadratic Gaussian (LQG) problem which has an explicit solution [2]. In fact, the optimal

feedback gain is given by −λ + 1/λ, and the minimal average power of u is Γ = (λ2 − 1)Φ.

Therefore, the minimal channel capacity required for stabilization is

Cmin =
1

2
log

(

1 +
Γ

Φ

)

= log(λ) (1.3)

where the formula of the capacity of the AWGN channel with input power constraint is

applied. Thus, the channel capacity must be larger than log(λ) for stabilizability of the

1Stabilizing controllers are those that can make the closed loop system internally stable, without taking
into consideration the communication channel. Internal stability is defined in Section 2.3.2
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Figure 1.4: An example of stabilization over an AWGN channel

system. It coincides with (1.2) and can be considered as the rate at which the unstable

system generates information.

Thus, the stabilization problem boils down to an optimal control problem, which is to

search for the lowest achievable channel input power under which the closed loop system

cannot be stabilized by any LTI controller. Using a similar LQG formulation, the paper [8]

and its journal version [9] have shown that the bound (1.2) also holds true for stabilization

of general unstable SISO linear plants over AWGN channel using state feedback. Using

H2 optimization on the complementary sensitivity function, they also show that, however,

in the case of output feedback, the bound is only tight for minimum phase plants with

relative degree one. For unstable nonminimum phase plants or those with relative degree

greater than one, the demand on the channel input power is strictly greater than (1.2) as an

additional term must be included. The result is expected, since relative degree amounts to

time delay for discrete-time systems and the negative effects of time delay and nonminimum

phase zeros on control are well known. The restriction to LTI controllers also accounts for

the increased SNR demand. In fact, [9] shows that, by using fast sampling and linear

time-varying (LTV) control schemes, this additional cost can be made arbitrarily small.

10



This additional term can also be eliminated by exploring the structure of the channel with

noiseless feedback [59]. The work [53,54] extend the previous result to bandlimited AWGN

channel and that with colored noise. They show that stricter stabilization requirement on

the channel SNR results, which is expected. For additive Gaussian wireless fading channels,

the authors of [11] use information theoretic techniques and stochastic calculus to prove a

similar result for the channel capacity requirement.

Despite substantial progress on stabilization issues, research on the control performance

of NCS’s is only beginning to emerge. Under this topic, the authors of [26, 27] investigate

the disturbance attenuation performance (measured by the variance of the plant output),

which amounts to minimizing the output power of a LTI minimum phase plant in response

to a Gaussian disturbance over a Gaussian communication feedback channel. The fact that

the performance index is the plant output simplifies the derivations. The authors of [26]

find out that pre- and post-scaling can be used effectively to compensate the channel and

better the control performance. It is assumed that the channel input is a constant multiple

of the plant output and so is the controller input from the channel. They derive the relation

between the scaling and the best achievable performance. The scaling factor is designed such

that the power constraint is fully utilized at the optimal performance, which is consistent

with one’s intuition. The later work by [27] studies potential improvements over [26] by

allowing the channel encoder to be nonlinear and time-varying and derives the minimal

variance of the plant output at a specified terminal time. Lower bound on the performance

achievable is derived using information theoretic methods. To show the bound is tight,

intricate coding and decoding schemes are designed, which involving noiseless feedback from

the channel output with a unit time delay, and different assumptions on the information
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available to the encoder. In another direction of research, the authors of [40, 41] have

studied the fundamental limitations that extends Bode’s integral formula, for disturbance

attenuation in feedback systems over noisy channel. In [41], a new type of performance

bound parameterized by the channel capacity and the plant parameters is derived.

Although our main concentration is AWN channel, we provide a partial review on

control over other types of noisy channels here. We have mentioned that, for AWN channels,

the bound (1.2) is necessary and sufficient for MSS. However, this cannot be generalized to

other noisy channels. The problem becomes dependent on the specific definitions of stability,

and whether side-information on the channel errors is available [42,47,63]. In fact, Shannon

capacity itself is no longer the correct figure-of-merit for stabilization over noisy channels,

as transmitting at the rate close to C introduces long coding delay [20], which will allow

the plant state to diverge further. Noiseless channels we considered in Section 1.2.2 are not

exposed to this issue because we only have to investigate source coding and cast channel

coding aside. The examples for the inadequacy of the Shannon capacity are provided in,

e.g., [56]. In that paper, anytime capacity is introduced and proved to be necessary and

sufficient for moment stability of stochastic feedback control system over noisy channels.

However, anytime capacity is in general difficult to compute and can hardly serve as a

control synthesis index.

1.3 Thesis Framework

We have reviewed the literature on NCS’s. It turns out that the existing results focus

mainly on stabilization and the studies on performance issues are still by and large imma-
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ture. In the thesis, we shall delve into a specific performance problem of NCS’s. We shall

present general configurations and specific problems in this section.

1.3.1 The tracking configuration

Throughout the thesis, we shall chiefly study the fundamental limitations on tracking

performance, for networked control systems over additive white noise channels. We shall

primarily study continuous-time LTI systems and continuous-time AWN channels, while

the discrete-time counterpart follows similarly. The system configuration has been shown

in Figure 1.1b, in which the networks are modeled by analog AWN channel, and as we have

mentioned, the linearity will be preserved. The measured signals are sent to the controller

via the communication channel N1, the uplink. The control signals are transmitted via

another channel N2, the downlink, to the plant. A more specific configuration is depicted

in Figure 1.5. The tracking error can then be defined as

e = r − y

and the stationary variance of e is the performance index. In particular, the uplink AWN

channel imposes the power constraint on the plant output while the downlink imposes the

constraint on the control signal.

In studying stabilization problems of SISO systems, it suffices to consider either the

uplink or the downlink, as they impose the same constraint on stabilization. That is not

the scenario for MIMO systems and we shall give stabilization results for both cases.

For tracking, the goal is to look for the best achievable performance through all sta-

bilizing LTI controllers, over either uplink or downlink channel. The performance bound
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Figure 1.5: Tracking configuration over uplink and downlink AWN channels

thus is valid irrespective of the compensator. We shall analyze each case and in essence,

how communication limitations affect the tracking performance.

1.3.2 Channel compensation through scaling

In conjunction with optimal tracking control, we also investigate a simple channel

compensation strategy by the design of a pre- and post-processing scheme via constant

scaling, which together constitute a joint design of the controller and the communication

channel. It is a natural option to use scaling, which is the simplest coding scheme for

AWN channels, to exploit the channel to the maximum extent allowable under the power

constraint. We shall provide a relation between the optimal tracking performance and the

corresponding optimal scaling factor. It is shown that, similar to the result in [26], the

power constraint is attained via optimal scaling. Comparisons between the case with and

without scaling factors show the improvement clearly.
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1.3.3 Fundamental limitations on the tracking performance

Performance bounds in control engineering hold indispensable importance. It gives a

separation line between what is attainable and what is not, rules out unnecessary trail and

errors, and points out directions for improving the control design. It also allows us to see

into what constrains the control performance fundamentally. Examples of such performance

bound are the Bode and Poisson integral relations about to what extent sensitivity is re-

ducible via feedback, including classic and recent studies [5, 6, 13, 16, 25]. It shows that, in

one way or another, intrinsic plant parameter such as unstable poles or nonminimum phase

zeros will impose severe limitations on the feedback system’s performance.

Recent years, limitations on tracking or disturbance attenuation performance of stan-

dard linear systems have been actively investigated and seen fruitful and insightful results.

A well-known characteristic is that, perfect tracking can be achieved for minimum phase

systems, but this property ceases to hold if the plant is nonminimum phase [33]. Explicit

expressions relating the nonminimum phase zeros to the tracking error of unit step signal

for SISO systems are derived in [43,51]. The results for MIMO systems involve directional

properties and are investigated in [17], and further generalized to other standard reference

inputs, such as ramp and sinusoidal signal [18], and the combination of step and several

sinusoidal signals of different frequencies [62]. Also, the work [12] studies the tracking

performance with structure constraint on the plant, namely the system is single-input mul-

tiple output. The seminal paper [15] has dealt with control energy constrained optimal

performance using convex optimization techniques and derived analytic expressions of the

performance bounds. It is among the first to study how additional constraints will affect the
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control performance, which our thesis is closely related to2. In summary, these and other

works have shown that the performance generally depends on the locations of nonminimum

phase zeros and unstable poles of the plant, and their directions if multivariate system is

considered.

We shall investigate how tracking performance is limited by communication, primarily

the power constraints modeled by AWN channels. It can then serve as a benchmark for the

quality of the communication channel in designing NCS’s with given performance specifi-

cations. Besides the factors we mentioned above for standard control systems, we expect

that a measure of the channel quality will also limit the performance in feedback control

over communication channels. We shall later see that channel capacity no longer suffices for

checking performance, even for SISO systems, though channel SNR or capacity is adequate

to characterize stability [9].

1.3.4 Parallel channels and power allocation

For MIMO systems, we consider multiple independent AWN channels in parallel with

a common power constraint [20] in the system. The relation between performance and

control systems and the channel is then more complex as spatial properties take effect.

When the MIMO channel is placed in the uplink, we shall examine its power allocation

strategy among individual channel to achieve the best tracking performance, which gives

an essential reference on how the channel should be designed to accommodate tracking

performance requirements.

2The techniques we use in the present thesis were mostly developed in that paper.
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1.3.5 Two channel stabilization

So far most of the results on stabilization take only one channel, either uplink or

downlink, into consideration. We shall study the stabilizability of the closed loop system

when both channels in Figure 1.5 are present. There will be a tradeoff between the power

constraints of both channels. First, the capacity or equivalently the power constraint for

each channel must satisfy the fundamental bound (1.2). Then we will search for, if the

power constraint for the uplink or downlink channel is limited, the bound on the power

constraint for the other channel, which is in essence a constrained optimization problem.

As analytical results are difficult and cumbersome to derive, we shall consider special system

models, such as scalar systems as the example in Section 1.2.3 and plants with only a single

real unstable pole.

1.4 Overview of Thesis Contents

The central contribution of this thesis is to discover the fundamental performance

limitations for LTI control systems over power-constrained additive white noise channels.

While using the tools from standard linear control theory, the thesis reveals explicitly the

effect of communication constraints on the control performance and is among the first

endeavors to address tracking performance problems of NCS’s.

• Chapter 2: This chapter presents the necessary background and includes the nota-

tions, definitions, concepts, lemmas and theorems that will be used heavily in latter

chapters.

• Chapter 3: This chapter presents the most important results of the thesis. It deals
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with the MIMO feedback control system with AWN channel in the uplink. First, the

conditions on the channel for stabilizability of both minimum phase and nonminimum

phase systems are derived. The results are generalizations of existing results on SISO

systems. Then, we prove the theorems for the best achievable tracking performance

over the AWN channel and investigate the optimal power allocation among the par-

allel channels, which is much different from the capacity-maximizing “water-filling”

solution. Next we propose a simple scaling across the channel which aims to better

utilize the power constraint. We derive the optimal tracking performance with scaling

which shows significant performance improvement. We also consider a fully decentral-

ized control structure and investigate its performance and power allocation when the

input to each channel can be independently adjusted. Lastly we design a numerical

example which agrees with the theoretical results.

The publications related to this chapter are [34, 36]. Similar results for discrete-time

systems can be found in [38].

• Chapter 4: This chapter is devoted to the tracking performance of LTI systems

with AWN channel in the downlink. As the control action is directly limited by the

communication, minimum phase behavior plays a role in the tradeoff between the

tracking performance and communication. We first present the stabilization results

for MIMO systems, which is comparable to those in Chapter 3. Then, we decompose

the tracking performance problem into a noise attenuation problem and a noise-free

reference tracking problem. The lower bound on tracking performance is obtained for

MIMO systems. As a special case, we show that the bound can be achieved for SISO
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systems.

The publication associated with this chapter is [35]. The development of the chapter

is based on [15].

• Chapter 5: This chapter discusses a related problem of stabilization with AWN

channels in both directions. Rather than focusing on the tradeoff between tracking and

the AWN channel, we investigate the tradeoff between the channels themselves. We

consider a special class of plants which have only one unstable pole and obtain explicit

tradeoff relations. In the process, we separately look into both one-parameter and two-

parameter controller. In addition, we solve the same problem for a discrete-time scalar

system with state feedback. The results, although restricted to special cases, reveal

interesting tradeoff relations between the channels for achieving stabilizability.

The publication related to this chapter is [37].

• Chapter 6: This chapter draws conclusions and discusses possible future research

directions.
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Chapter 2

Preliminaries

2.1 Introduction

In this chapter, we introduce the notation, explain the general problems and then

collect the technical machinery necessary for the subsequent development of the thesis.

2.2 Notations

The transpose and conjugate transpose of a matrix A are denoted by AT and AH ,

and its largest and smallest singular values are denoted by σ(A) and σ(A), respectively.

In addition, let A∼(s) denote AT (−s). Vectors are denoted by boldface letters. We shall

assume that all the vectors and matrices have compatible dimensions, and omit the dimen-

sions where appropriate. The field of real numbers is denoted by R and the field of complex

numbers is denoted by C. The open left, the open right halves of the complex plane and

the imaginary axis are denoted by C− , { s : Re(s) < 0 }, C+ , { s : Re(s) > 0 } and

C0, respectively. The expectation operator is denoted by E . In addition, ‖ · ‖ denotes the
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Euclidean vector norm and ‖ · ‖F the Frobenius matrix norm. For a pair of nonzero vectors

w and v, we define the principal angle ∠(w, v) between their directions by

cos ∠(w, v) ,
|wHv|
‖w‖‖v‖ .

We shall consider the Hilbert space

L2 ,

{

G : G(s) measurable in C0, ‖G‖2
2 ,

1

2π

∫ ∞

−∞
‖G(jω)‖2

F dω < ∞
}

,

in which the inner product is defined as

〈F, G〉 ,
1

2π

∫ ∞

−∞
Trace

{

F (jω)GH(jω)
}

dω.

It is known that L2 admits an orthogonal decomposition into the (closed) subspaces H2 and

H⊥
2 , where

H2 ,

{

G : G(s) analytic in C+, ‖G‖2
2 , sup

ǫ>0

1

2π

∫ ∞

−∞
‖G(ǫ + jω)‖2

F dω < ∞
}

(2.1)

and its complement is

H⊥
2 ,

{

G : G(s) analytic in C−, ‖G‖2
2 , sup

ǫ<0

1

2π

∫ ∞

−∞
‖G(ǫ + jω)‖2

F dω < ∞
}

.

It follows that for any F ∈ H2 and G ∈ H⊥
2 , we have 〈F, G〉 = 0. Thus, for any F ∈ L2, we

can decompose it into part in H2, denoted by [F ]H2
, and part in H⊥

2 , denoted by [F ]H⊥

2

, as

F = [F ]H2
+ [F ]H⊥

2

. (2.2)

Then, because of the orthogonality

‖F‖2
2 = ‖[F ]H2

‖2
2 + ‖[F ]H⊥

2

‖2
2.
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Finally, let RH∞ denote the set of all stable, proper, rational transfer function matrices. If

the norm is defined as

‖F‖∞ , sup
Re(s)>0

σ (F (s)) ,

then RH∞ is a Banach space.

2.3 Stability and Performance of Feedback Systems

2.3.1 Linear dynamical systems

The introduction of linear dynamical systems follows [70]. We can represent a continuous-

time finite dimensional, linear time invariant system in state space by the following constant

coefficient differential equations:

ẋ = Ax + Bu, x(t0) = x0,

y = Cx + Du

where x(t) ∈ Rn is called the system state, x(t0) is called the initial condition of the system,

u(t) ∈ Rk is called the system input, and y(t) ∈ Rm is the system output. A system with

k = 1 and m = 1 is called SISO, otherwise it is called MIMO. The transfer function from u

to y is defined as

ŷ(s) = G(s)û(s)

where û(s) and ŷ(s) are the Laplace transform of u(t) and y(t) with zero initial condition,

respectively. The frequency variable s shall be omitted whenever convenient. We shall

assume that all transfer functions are real-rational. For a causal system, its transfer function

G(s) must be proper, which means lims→∞ G(s) exists and is finite. A transfer function

22



G

K +
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Figure 2.1: Block diagram for stability definition

G(s) is strictly proper if and only if lims→∞ G(s) = 0. It is well-known that a transfer

function in L2 must be strictly proper.

A pole p is said to be stable if and only if p ∈ C−, unstable if and only if p ∈ C+ and

marginally stable if and only if p ∈ C0. Then, we say that a proper transfer function G is

stable if and only if all of its poles are stable, unstable if and only if it has poles that are

unstable, and marginally stable if and only if it has marginally stable poles besides stable

poles.

Similarly, a zero z is said to be minimum phase if and only if z ∈ C−, nonminimum

phase if and only if z ∈ C+ and marginally minimum phase if and only if z ∈ C0. Then,

we say that a proper transfer function G is minimum phase if and only if all of its zeros

are minimum phase, nonminimum phase if and only if it has zeros that are nonminimum

phase, and marginally minimum phase if and only if it has marginally minimum phase zeros

besides minimum phase zeros.

2.3.2 Internal stability

Consider the feedback system depicted in Figure 2.1. To guarantee that a block diagram

of a system is physically realizable, we need the following definition.
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Definition 2.1 (Well-posedness of feedback loop [70]) A feedback system is said to

be well-posed if all closed-loop transfer matrices are well-defined and proper.

A necessary and sufficient condition for well-posedness is

I − K(∞)P (∞)

is invertible, which will be assumed throughout the thesis.

Definition 2.2 (Internal stability [70]) The system is said to be internally stable if and

only if the state vectors of G and K converge to zero from all initial conditions when

(w1, w2 ) = 0.

The system in Figure 2.1 is internally stable if and only if the transfer function matrix

from (w1, w2 ) to (u, y ) belongs to RH∞. We use “stability” as a synonym for “internal

stability”.

Definition 2.3 (Stabilizable plant) A plant G is said to be stabilizable if and only if

there exists a system K(s), which is proper, such that the interconnected system in Figure 2.1

is internally stable and well-posed.

2.3.3 Coprime factorization over RH∞

Definition 2.4 (Coprime matrices, see, e.g. [24])

1. Two matrices F and G in RH∞ are right-coprime (over RH∞) if they have equal

number of columns and there exist matrices X and Y in RH∞ such that

[

X Y

]









F

G









= I,
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or, equivalently,









F

G









is left-invertible in RH∞.

2. Two matrices F and G in RH∞ are left-coprime (over RH∞) if

[

F G

]

is right-

invertible in RH∞.

We shall need a doubly-coprime factorization of a transfer function matrix G [24].

Lemma 2.5 For each proper real-rational transfer function matrix G, there exist matrices

satisfying the following equation

G = NM−1 = M̃−1Ñ (2.3)

where N, M, Ñ, M̃ ∈ RH∞ and satisfy the double Bezout identity









X̃ −Ỹ

−Ñ M̃

















M Y

N X









= I (2.4)

for some X, Y, X̃, Ỹ ∈ RH∞.

A system configuration with a two-parameter controller is depicted in Figure 2.2. The

two-parameter controller operates on r(t) and y(t) obeying the equation in frequency domain

as

û = K1r̂ + K2ŷ.

It has two degrees of freedom and represents the most general linear feedback structure. In

the thesis we shall frequently use the following Youla parameterization [67] of stabilizing

two-parameter controllers:
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[K1 K2] P
u(t)r(t) y(t)

Figure 2.2: Tracking via a two-parameter controller

Theorem 2.6 Consider the system in Figure 2.2. Assume the plant G is stabilizable. The

set of all stabilizing two-parameter compensators is characterized by

K =

{

K : K =

[

K1 K2

]

= (X̃ − RÑ)−1 ×
[

Q Ỹ − RM̃

]

, Q, R ∈ RH∞

}

. (2.5)

The one-parameter controller, being a special case, is equivalent to the two-parameter

controller with K1 = −K2 = K, in which case we have the following theorem:

Theorem 2.7 The set of all stabilizing compensator K is characterized by

K =
{

K : K = −(Y − MQ)(X − NQ)−1 = (X̃ − QÑ)−1(Ỹ − QM̃), Q ∈ RH∞
}

. (2.6)

2.3.4 Zeros and poles

The zeros and poles for a SISO transfer function are the roots of its numerator and

denominator polynomials. For multivariable systems, the zeros and poles are similar but

have directional properties involved. We introduce the notion of transmission zeros here,

which are the only type of zeros we will deal with. They are often defined via the Smith-

McMillan form [52] and can be characterized using state space representations [13, 14, 58].

In particular, let (A, B, C, D) be a minimal realization of a proper, left-invertible transfer

function matrix G(s), then a point z ∈ C+ is called a nonminimum phase zero of G if there
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exist vectors χ and ω such that the equation








zI − A −B

−C −D

















χ

ω









= 0

holds, where ω with ‖ω‖ = 1 is called the input zero direction vector associated with z.

Alternatively, a nonminimum phase zero z of a right-invertible G(s) satisfies the relation

[

ζH ηH

]









zI − A −B

−C −D









= 0

where ζ is some vector and ‖η‖ = 1. The vector η is called the output zero direction asso-

ciated with z. It follows immediately from these definitions that G(z)ω = 0 or ηHG(z) = 0,

respectively. Thus, the matrix G(s) drops in rank at z. There may exist multiple indepen-

dent input (or output) directions associated with z, the number of those directions is equal

to the rank deficiency of G(z) and is defined as the geometric multiplicity of the zero.

In our later development we shall primarily be interested in the characterization of the

nonminimum phase zeros and unstable poles via the doubly coprime factorization (2.3). In

this vein, a complex number z ∈ C+ is said to be a nonminimum phase zero of G with

an output direction vector η if and only if ηHN(z) = 0, where ‖η‖ = 1 and that it is a

nonminimum phase zero with an input direction vector ω if and only if Ñ(z)ω = 0. On

the other hand, since the unstable poles of G coincide with the nonminimum phase zeros of

M and M̃ , the poles of G can also be characterized analogously using the doubly coprime

factorizations. We shall call p ∈ C+ a unstable pole of G with a left pole direction vector η

if ηHM(p) = 0, where ‖η‖ = 1. Accordingly, p is an unstable pole of G with right direction

vector ω, if M̃(p)ω = 0. We shall assume throughout this thesis that a zero and a pole can

not be at the same location and hence preclude the possibility of hidden unstable pole-zero
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cancelation. Furthermore, we shall also assume that the plant transfer function has only

simple (i.e. single multiplicity) poles and zeros in C+.

2.3.5 Allpass factorization

We shall assume that the plant transfer function G(s) is right-invertible. Then it is

well-known that a nonminimum phase system G can be factorized into a minimum phase

factor and an allpass part by an iterative procedure. Here, we shall be particular interested

in the similar factorizations on coprime factors.

Suppose that the nonminimum phase zeros of the plant are ordered as zi ∈ C+, i =

1, . . . , k, which coincide with zeros of N(s). Let η1 be the output direction vector associated

with z1 and define

L1(s) , I − 2Re{z1}
s + z̄1

η1η
H
1 .

Note that L1 is constructed such that it is unitary, has only one zero at z1 with η1 as a

zero vector. Upon this factorization, the transfer function L−1
1 N has zeros zi, i = 2, . . . , k.

Then, for the zero z2 we can find the associated vector η2 for L−1
1 N and construct

L2(s) , I − 2Re{z2}
s + z̄2

η2η
H
2 .

Then, the transfer function L−1
2 L−1

1 N has zeros zi, i = 3, . . . , k. Continue this procedure

until we have collected all nonminimum phase zeros, then the part left is minimum phase.

Lemma 2.8 Suppose that the plant P is right invertible and admits the coprime factoriza-

tion 2.3. Order the nonminimum phase zeros as zi ∈ C+, i = 1, . . . , k such that conjugate

pairs are placed adjacently. Then, it is possible to factorize the coprime factor N as

N(s) = L(s)Nm(s) (2.7)
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where L(s) can be constructed as

L(s) ,

k
∏

i=1

Li(s) (2.8)

with

Li(s) , I − 2Re{zi}
s + z̄i

ηiη
H
i (2.9)

where the unitary vector ηi associated with zi is determined sequentially. The factor Nm is

minimum phase.

Alternatively, if the plant is left-invertible, we may factorize Ñ in the same way, as

state in the following lemma:

Lemma 2.9 Suppose that the plant P is left invertible and has the nonminimum phase

zeros ordered as zi ∈ C+, i = 1, . . . , k. Then, it is possible to factorize the coprime factor

Ñ as

Ñ(s) = Ñm(s)L̃(s) (2.10)

where L̃(s) can be constructed as

L̃(s) , L̃kL̃k−1 · · · L̃1 (2.11)

with

L̃i(s) , I − 2Re{zi}
s + z̄i

η̃iη̃
H
i (2.12)

and Ñm is minimum phase.

Additionally, it is possible to factorize M and M̃ analogously.
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Lemma 2.10 If the unstable poles of P are ordered as pi ∈ C+, i = 1, . . . , l. Then

M(s) = B(s)Mm(s), (2.13)

M̃(s) = M̃m(s)B̃(s), (2.14)

and B(s), B̃(s) can be constructed as,

B(s) ,

l
∏

i=1

Bi(s) (2.15)

and

B̃(s) , B̃l(s)B̃l−1(s) · · · B̃1(s) (2.16)

with

Bi(s) , I − 2Re{pi}
s + p̄i

ωiω
H
i ,

B̃i(s) , I − 2Re{pi}
s + p̄i

ω̃iω̃
H
i .

The factors Mm and M̃m are minimum phase.

While these factorizations can be explicitly constructed, they are not unique and de-

pend on the specific order of the zeros or poles. It is also worth noting that, the allpass

factors satisfy Bi(0) = B̃i(0) = Li(0) = L̃i(0) = I.

2.3.6 Inner-outer factorization

Definition 2.11 (Inner and outer matrices in RH∞ [24])

1. A matrix G in RH∞ is inner if and only if G∼G = I.

2. A matrix G in RH∞ is outer if and only if G has full row-rank for every s ∈ C+.
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An inner matrix must be tall and pre-multiplication by an inner matrix is L2 norm pre-

serving. Likewise, an outer matrix must be wide and has a right inverse which is analytic

in C+.

Theorem 2.12 (Inner-outer factorization) If G ∈ RH∞, then there exists the inner-

outer factorization

G = GiGo, (2.17)

in which the matrix Gi is inner and Go is outer.

Definition 2.13 A matrix G is called co-inner or co-outer if and only if GT is inner or

outer.

A inner outer factorization of GT yields the co-inner-outer factorization, which has the

form

G = GcoGci. (2.18)

2.3.7 Optimization in H2

For F, G, Q, H ∈ RH∞, define

J(Q) = ‖F − GQH‖2 .

In the thesis, we shall repeatedly encounter the H2 optimization problem

J∗ , inf
Q∈RH∞

J(Q) (2.19)

under the conditions that

Assumption 2.14
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1. F is strictly proper,

2. G(jω) has full row rank for all 0 ≤ ω ≤ ∞,

3. H(jω) is square and nonsingular for all 0 ≤ ω ≤ ∞.

Because of the fact that F − GQH is affine in Q and the property of the H2 norm,

the functional J(Q) is convex in Q. The optimization problem can be solved by using the

decomposition (2.2) and the inner-outer factorization. To be more specific, factorize G and

H as

G = GiGo,

H = HcoHci.

Then we have the following result

Theorem 2.15 Under Assumption 2.14, the solution to (2.19) is given by

J∗ = ‖I − GiG‖2
2 +

∥

∥

∥[G∼
i FH∼

ci ]H⊥

2

∥

∥

∥

2

2
, (2.20)

and the optimal Q ∈ RH∞ satisfies

GoQHco = [G∼
i FH∼

ci ]H2
(2.21)

The proof of the theorem relies on the following lemma about a L2-norm preserving ma-

trix [15,24]

Lemma 2.16 Let U be an inner matrix and define the matrix

E ,









U∼

I − UU∼









. (2.22)

Then, E∼E = I and thus ‖EG‖2
2 = ‖G‖2

2.
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Proof. This can be easily verified by basic algebraic manipulation.

Proof of Theorem 2.15. Since H is nonsingular, the co-inner factor Hci is also

square and nonsingular. Then we have

J = ‖F − GiGoQHcoHci‖2
2

= ‖FH∼
ci − GiGoQHco‖2

2 .

Introduce the matrix

E =









G∼
i

I − GiG
∼
i









.

It follows that








G∼
i

I − GiG
∼
i









GiGoQHco =









GoQHco

0









.

Pre-multiplying FH∼
ci − GiGoQHco by E, we arrive at

J = ‖G∼
i FH∼

ci − GoQHco‖2
2 + ‖(I − GiG

∼
i ) F‖2

2

since

∥

∥

∥

∥

∥

∥

∥

∥









A

B









∥

∥

∥

∥

∥

∥

∥

∥

2

2

= ‖A‖2
2 + ‖B‖2

2. Then, applying the decomposition (2.2) on G∼
i FH∼

ci , we

have

J =
∥

∥[G∼
i FH∼

ci ]H2
− GoQHco

∥

∥

2

2
+

∥

∥

∥
[G∼

i FH∼
ci ]H⊥

2

∥

∥

∥

2

2
+ ‖(I − GiG

∼
i ) F‖2

2

≥
∥

∥

∥
[G∼

i FH∼
ci ]H⊥

2

∥

∥

∥

2

2
+ ‖(I − GiG

∼
i ) F‖2

2

= J∗

and the theorem is proved.

Remark 2.17 The second or third condition on Assumption 2.14 may not always hold.

In the thesis, we shall run into the problem that G is strictly proper and in this case,
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the parameter Q∗ that satisfies (2.21) does not belong to RH∞. However, we can always

construct a suboptimal parameter (see, e.g. [67])

Qǫ ,
1

(ǫs + 1)l
Q∗ (2.23)

where l is selected such that Qǫ ∈ RH∞. It can be proven that

lim
ǫ→0

J(Qǫ) = J∗.

Therefore, (2.20) still holds true.

2.3.8 Partial fraction expansion

To yield possible explicit decomposition (2.2) and expressions for H2 optimization, we

resort to the well-known partial fraction expansion technique. Here we develop a matrix

variation of the partial fraction expansion, which will find applications in Chapter 3. The

result is summarized in the following lemma:

Lemma 2.18 Consider a matrix function R ∈ RH∞ and a collection of points zi ∈ C+,

i = 1, . . . , k. Define allpass matrix functions L(s) and F (s) as

L(s) =
k

∏

i=1

Li(s),

F (s) = Lk(s)Lk−1(s) · · ·L1(s),

with

Li(s) = I − 2Re{zi}
s + z̄i

ηiη
H
i

where ‖ηi‖ = 1. Then the following equality holds for some Y ∈ RH∞:

L−1R = Y +
k

∑

i=1

L−1
k (zi) · · ·L−1

i+1(zi)L
−1
i L−1

i−1(zi) · · ·L−1
1 (zi)R(zi). (2.24)
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It is also true that for some Z ∈ RH∞,

RF−1 = Z +
k

∑

i=1

R(zi)L
−1
1 (zi) · · ·L−1

i−1(zi)L
−1
i L−1

i+1(zi) · · ·L−1
k (zi). (2.25)

In addition, if R is a constant matrix, then Y and Z are also constant matrices.

Proof. We shall only prove (2.24). The second part (2.25) follows analogously. For

k = 1, the lemma clearly holds and L−1
1 (R − R(z1)) = Y ∈ RH∞. More generally, for any

i ∈ [1, k], and any constant matrices Z1 and Z2, it is true that

Z1L
−1
i Z2R = Y + Z1L

−1
i Z2R(zi) (2.26)

with Y ∈ RH∞.

Now for any k > 1, consider the case i, j ∈ [1, k], i 6= j. Using the Sherman-Morrison

formula, we have

L−1
i (s) = I +

2Re{zi}
s − zi

ηiη
H
i . (2.27)

In light of (A.4), it is easy to verify that for any constant matrix Z we can construct a

constant matrix Yij such that

(

L−1
i − L−1

i (zj)
)

Z
(

L−1
j − L−1

j (zi)
)

= Yij .

If we define Y = Yij − L−1
i (zj)ZL−1

j (zi), which is also constant, then

L−1
i ZL−1

j = Y + L−1
i ZL−1

j (zi) + L−1
i (zj)ZL−1

j . (2.28)

Then, we can complete the proof by induction. To this end, suppose that the lemma

is true for k = n − 1. There exists Yn−1 ∈ RH∞, such that

L−1
n−1 · · ·L−1

1 R = Yn−1 +
n−1
∑

i=1

L−1
n−1(zi) · · ·L−1

i+1(zi)L
−1
i L−1

i−1(zi) · · ·L−1
1 (zi)R(zi). (2.29)

35



It follows that for k = n,

L−1
n · · ·L−1

1 R = L−1
n Yn−1 + L−1

n

n−1
∑

i=1

L−1
n−1(zi) · · ·L−1

i+1(zi)L
−1
i L−1

i−1(zi) · · ·L−1
1 (zi)R(zi).

From (2.26), we obtain

L−1
n Yn−1 = Y ′ + L−1

n Yn−1(zn)

where Y ′ ∈ RH∞. Then, applying (2.28) to the second term of the equation, and making

use of the equation (2.29) at s = zn, we obtain that

L−1
n · · ·L−1

1 R = Yn +
n

∑

i=1

L−1
n (zi) · · ·L−1

i+1(zi)L
−1
i L−1

i−1(zi) · · ·L−1
1 (zi)R(zi).

The matrix Yn ∈ RH∞ is thus given by

Yn = L−1
n (Yn−1 − Yn−1(zn)) +

n−1
∑

i=1

Y (i),

where Y (i) ∈ RH∞ is the remainder of the partial fraction expansion of

L−1
n L−1

n−1(zi) · · ·L−1
i+1(zi)L

−1
i L−1

i−1(zi) · · ·L−1
1 (zi)R(zi)

by applying (2.28). The matrix Y (i) is a constant matrix if R is constant. Hence, if R is a

constant matrix, then Yn is also constant.

2.4 Convex Optimization

As the AWN channel is power constrained, we rely on constrained convex optimization

to derive several main results of the thesis. Excellent materials on convex optimization

are [7, 39]. In this section we shall give two fundamental results of the subjects.
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The first is a general principle. It shows that minimization of a function of two variables

can be performed one at a time [7].

inf
x,y

f(x, y) = inf
x

f̃(x) (2.30)

where f̃(x) = infy f(x, y).

The second result is concerned with constrained optimization. The basic problem is:

minimize f(x),

subject to x ∈ Ω, G(x) ≤ 0,

(2.31)

where Ω is a convex subset of a vector space X, f and G are real-valued convex functional

on Ω. As we consider values in R, the ordering is well-defined. Problem (2.31) is referred

to as the general convex programming problem.

Introduce the dual function ϕ on R corresponding to (2.31) as

ϕ(v) = inf
x∈Ω

[ f(x) + vG(x) ] .

It is easy to verify that ϕ(v) is concave. The problem (2.31) can then be studied through

duality principle by way of the Lagrange multiplier v. The following theorem, adopted as

a special case of [39, section 8.6, Theorem 1], demonstrates the equivalence between the

minimization of a convex function and the maximization of a concave function.

Theorem 2.19 (Lagrange duality [39]) Let f be a real-valued convex function defined

on a convex subset Ω of a vector space X, and let G be a convex mapping of X into R.

Suppose there exists an x1 such that G(x1) < 0 and the optimal value inf{ f(x) : G(x) ≤

0, x ∈ Ω } is finite. Then

inf
G(x)≤0

x∈Ω

f(x) = max
v≥0

ϕ(v) (2.32)

and the maximum on the right is achieved by some v∗ ≥ 0
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2.5 Stochastic Processes

As the communication channel we deal with is AWN channel, we need the framework

of stochastic control system. Rather than examining precisely the transient behavior of

stochastic control through stochastic calculus, we focus on and analyze only stationary

characteristics using control system theory. In this section, we introduce the basic concepts

(see, e.g. [4, 49]) pertaining to stochastic processes that will be referred to in the coming

chapters.

A stochastic process (random process) is a family of (vector valued) random variables

{x(t) ∈ Rn, t ∈ T }. The index t is often interpreted as time and belongs the the index

set T . When T = {. . . ,−1, 0, 1, . . .} or {0, 1, 2, . . .}, the stochastic process is referred to as

discrete-time process; when T = { t : 0 ≤ t < ∞} or { t : −∞ < t < ∞}, the stochastic

process is referred to as continuous-time process.

The complete description of x(t) requires the joint cumulative distribution function

(CDF) of x(t1), x(t2), . . . ,x(tk) for any k and arbitrary ti ∈ T 1. However, it suffices to

consider the first and second moment statistics of the random process for the purpose of

this thesis.

We assume the random process x(t) is real-valued.

Definition 2.20 The mean of a random process x(t) is defined as E{x(t)}, which is denoted

by µx(t).

Higher moments of the random process are defined similarly.

1An exception is the Gaussian process, which is completely determined by its mean and covariance
function.
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Definition 2.21 The covariance matrix of x(t) is denoted by Rx(t, t + τ), which is defined

as

Rx(t, t + τ) , E
{

(x(t) − µx(t)) (x(t + τ) − µx(t + τ))T
}

for all t and t + τ such that x(t) and x(t + τ) are defined.

The variance of x(t), denoted by σ2
x
(t), is thus given by

σ2
x
(t) = Trace{Rx(t, t)}. (2.33)

Definition 2.22 A pair of stochastic processes x(t) and y(t) are uncorrelated if their cross-

covariance

Rxy , E
{

(x(s) − µx(s)) (y(t) − µy(t))T
}

is 0 for all s, t ∈ T .

Given the above definitions, we will discuss some special stochastic processes that are

of particular interest to the ensuing chapters.

Definition 2.23 (Stationary processes [1, 49])

1. A stochastic process x(t) is strict-sense stationary, or simply stationary if any of its

associated joint CDF’s are unaffected by time translation.

2. A stochastic process x(t) is wide-sense stationary if the first and second moments of

the distributions are invariant under time translation. In this case, the mean µx(t) is

constant and the covariance Rx(t, t + τ) = Rx(τ), and thus only depends on the time

difference.
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Definition 2.24 (Second order) A process x(t) is of second order if the second moment

E
{

xT (t)x(t)
}

< ∞ for all t ∈ T .

For a process of second order the mean µx(t) and the covariance function Rx(t, t+ τ) exist.

Definition 2.25 (Power spectrum [49]) The power spectrum matrix Gx(s) for a wide-

sense stationary stochastic process x(t) is the (bilateral) Laplace transform of the covariance

matrix Rx(τ), as

Gx(s) ,

∫ ∞

−∞
Rx(τ)e−sτ dτ.

Remark 2.26 The Wiener-Khinchin theorem states that the region of convergence of the

above Laplace transform will at least include the imaginary axis C0, on which it yields

Gx(jω), the power spectral density of x(t).

It is worth noting that the variance of x(t)

σ2
x
(t) = Trace{Rx(0)} =

∫ ∞

−∞
Trace{Gx(jω)}dω. (2.34)

The covariance matrix of a wide-sense stationary stochastic process x(t) has the property

that RT
x (τ) = Rx(−τ), therefore its power spectrum matrix satisfies GH

x (s) = Gx(−s̄). If

we further assume that Gx is rational, it admits the spectral factorization

Gx = Ψ∼
x Ψx (2.35)

and the spectral factor Ψx and its inverse Ψ−1
x are both analytic in C+ [1, 68]. It then

follows from (2.34) and the definition of the H2 norm that the variance of a second order

stochastic process can be expressed as,

σ2
x

= ‖Ψx(s)‖2
2. (2.36)
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Definition 2.27 (White noise) A process x(t) is referred to as a white noise process if

it is zero mean, wide-sense stationary and has constant power spectral density.

This is equivalent to

Rx(τ) = Cδ(τ)

for some constant matrix C, where δ(t) is the dirac delta function.

2.5.1 Stochastic process as input to LTI systems

Stability of LTI systems in the deterministic sense suggests bounded behavior of stochas-

tic systems. In particular, if a LTI system is asymptotically stable2, then the mean and

the second moment of the state of the corresponding stochastic system converge and are

finite3, provided that the initial state random variable and the input process are both of

second order (see [61, Section 4.4.5] or [4, Section 3.6]). If a wide-sense stationary random

process x(t) passes through an asymptotically stable, LTI system described by the transfer

function matrix P (s), then the power spectrum of the output process y(t) (which is also

wide-sense stationary) is given by [4, 49,61]

Gy(s) = P (s)Gx(s)P∼(s).

A simple derivation shows an important fact about the variance of y(t):

Lemma 2.28 Assume that y(t) is the output process of an internally stable LTI system

P (s) driven by a wide-sense stationary input process x(t) commencing in the infinitely

remote past. Then y(t) is also wide-sense stationary and its variance is calculated as

σ2
y

= ‖PΨx‖2
2 , (2.37)

2The eigenvalues of the autonomous matrix A lie in C−.
3This is called the mean square stability of a stochastic system.
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where Ψx is the power spectral factor of x(t).

This lemma serves as a cornerstone of the subsequent development of the thesis.

2.6 Summary

In this chapter, we have provided relevant concepts, definitions and technical tools that

will be used repeatedly throughout the thesis. Specifically, as for LTI systems, we have in-

troduced the notion of internal stability, coprime factorization, definitions of zeros and poles

in multivariate systems and inner-outer factorizations. We have also presented the general

procedures for H2 optimization and proved a form of matrix partial fraction expansion.

Also, we have listed results in convex optimization. As we shall deal with communication

channels, we have provided relevant results of stochastic processes and control.
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Chapter 3

Tracking Performance over Uplink

Channel

3.1 Introduction

In this chapter, we delve into the problem of the fundamental constraints that the uplink

AWN channels impose on the tracking performance. First and foremost, we investigate the

stabilization of MIMO systems over the parallel AWN channels. Although the stabilization

results for SISO systems are available [9], as well as a stream of ensuing work such as [53,54],

the more general MIMO configuration generates more complex results that have interesting

properties we have not observed for single variable systems.

For standard control systems, the tracking performance depends solely on nonmini-

mum phase zeros for SISO stable plants [43]. For MIMO unstable systems, the tracking

capability is determined by the location and directional properties of the unstable poles

and nonminimum phase zeros of the plant [19, 51, 65]. We show that these factors con-
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tinue to play important roles in networked configurations, though in a much different way.

This is expected since standard control systems can be considered as special cases of NCS’s

with communication channels being ideal. Furthermore, unique characteristics pertaining

to networked configuration such as the spectral factor of the reference process, the power

constraint and the noise levels, constrain the performance as well, which we have not seen

previously.

It is expected that the best tracking performance is achieved when the channel input

power constraint is fully utilized. Among various channel compensation/coding mecha-

nisms, the simplest method, a pre- and post-scaling, can effectively adjust the power to

its upper bound. This simple strategy is optimally designed and is shown to significantly

improve the tracking performance.

It is well-known that for parallel AWGN channels sharing a total power constraint, the

maximal capacity is achieved through allocating power using Shannon’s classical “water-

filling” solution. However, the solution maximizes the capacity without considering system

specifications and thus is in general not adequate to characterize performance. As another

important result in this chapter, we derive the optimal power allocation policy for tracking

performance of MIMO systems.

The rest of the chapter is organized as follows: Section 3.2 introduces the problem

and its mathematical formulation. In Section 3.3 we derive the conditions for stabilization

of MIMO LTI systems over parallel AWN channels. Section 3.4 presents the results for

the optimal tracking performance for both minimum phase and nonminimum phase MIMO

systems, without considering scaling. Section 3.5 develops in parallel with Section 3.4 but

investigates optimized scaling across the channel. Both sections present optimal power
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allocation strategies for the parallel channels. Section 3.6 numerically validates and demon-

strates the previous results by examples of SISO plants.

3.2 Problem Formulation

We consider the specific configuration shown in Figure 3.1. The plant output is to

track the reference input and the channel constrains the power of the feedback signal. That

the channel input power is finite indicates that the system can only track reference process

of second order. It then necessitates the following assumption:

Assumption 3.1 The reference stochastic process r(t) is real, zero-mean, of second order

and has a rational power spectrum matrix.

It follows from (2.36) that the power of the reference input σ2
r

= ‖Ψr‖2
2.

A standard assumption in tracking problems is that the plant transfer function matrix is

right-invertible (see, e.g., [19,51]). Consequently, we shall impose the following assumption

in this chapter.

Assumption 3.2 The plant transfer function matrix P (s) has full row rank for some s ∈ C.

We can then characterize the zeros and poles of the plant by way of the doubly coprime

factorization (Lemma 2.5). Furthermore, suppose that the nonminimum phase zeros of the

plant are ordered as zi ∈ C+, i = 1, . . . , k and the unstable poles are ordered as pi ∈ C+,

i = 1, . . . , l. Then we may apply the allpass factorizations illustrated in Section 2.3.5. The

sequentially determined direction vectors associated with zero zi and pole pi are denoted

by ηi and ωi, respectively. We shall be particular interested in the factorizations (2.7)

and (2.14).
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[K1 K2] P
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n

r y

Figure 3.1: Tracking configuration over uplink AWN channel

The collection of zero-mean white noise of the parallel AWN channels is represented by

the vector n = (n1, . . . , nm)T and Φi, 1 ≤ i ≤ m denote the power spectral density of the

corresponding white noise process. It has power spectral factor Ψn , diag{
√

Φ1, . . . ,
√

Φm}

as we assume that the noise processes for two different channels ni and nj are uncorrelated

for any i 6= j, 1 ≤ i, j ≤ m. The channel input u is equal to the plant output y. The

tracking error is e = r − y.

The performance problem of interest is that, under a given power constraint on the

uplink channel, the smallest tracking error the system can achieve over all stabilizing LTI

controllers K = [K1 K2]. It can be formulated as

minimize E{‖e‖2}

subject to E{‖u‖2} ≤ Γ, K ∈ K
(3.1)

where K is the parameterized set of all stabilizing controllers defined in (2.5). The prob-

lem (3.1) is a special case of the multiple objective optimal control problem [32].
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Define T e
r,n and T u

r,n as the closed-loop transfer function from r, n to e and u, respec-

tively. Then, it is straightforward to write

T e
r,n =

[

I − (I − PK2)
−1 PK1, − (I − PK2)

−1 PK2

]

,

T u
r,n =

[

(I − PK2)
−1 PK1, (I − PK2)

−1 PK2

]

.

Given the Youla parametrization (2.5), the optimization problem (3.1) is then equivalent

to

minimize ‖T e
r,nΨr,n‖2

2 (3.2a)

subject to ‖T u
r,nΨr,n‖2

2 ≤ Γ, Q, R ∈ RH∞ (3.2b)

where Ψr,n , diag{Ψr, Ψn}. The following lemma shows that (3.2) is a convex optimization

problem.

Lemma 3.3 Both ‖T e
r,nΨr,n‖2

2 and ‖T u
r,nΨr,n‖2

2 are convex functionals of (Q, R) ∈ RH∞ ×

RH∞.

Proof. With the aid of Youla parametrization (2.5), the transfer matrices can be expressed

as

T e
r,n =

[

I − NQ, −N(Ỹ − RM̃)

]

,

T u
r,n =

[

NQ, N(Ỹ − RM̃)

]

,

and each of the above entries is an affine function of Q or R. From the assumption that r

and n are uncorrelated, we have

‖T e
r,nΨr,n‖2

2 = ‖(I − NQ)Ψr‖2
2 + ‖N(Ỹ − RM̃)Ψn‖2

2, (3.3a)

‖T u
r,nΨr,n‖2

2 = ‖NQΨr‖2
2 + ‖N(Ỹ − RM̃)Ψn‖2

2. (3.3b)
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And they are convex functionals of (Q, R) ∈ RH∞ ×RH∞ since the L2-norm functional is

convex (cf. Section 2.3.7).

Definition 3.4 The feasibility set of problem (3.1) is defined as

̥ ,
{

Γ : There exists K ∈ K with E{‖u‖2} ≤ Γ
}

. (3.4)

On the set ̥, we define the primal function as

H∗
e (Γ) , inf

{

E{‖e‖2} : K ∈ K, E{‖u‖2} ≤ Γ
}

. (3.5)

We have the following characterization of the primal function:

Lemma 3.5 Let ǫ ∈ [0, 1], and define the following functional:

H(ǫ, Q, R,Γ) , (1 − ǫ)‖T e
r,nΨr,n‖2

2 + ǫ
(

‖T u
r,nΨr,n‖2

2 − Γ
)

. (3.6)

If there exists Q, R ∈ RH∞ such that

‖T u
r,nΨr,n‖2

2 < Γ, (3.7)

then

H∗
e (Γ) = sup

0≤ǫ≤1

1

1 − ǫ

(

inf
Q,R∈RH∞

H(ǫ, Q, R,Γ)

)

. (3.8)

Proof. The lemma follows from Theorem 2.19 if we take RH∞×RH∞ as Ω, and the dual

function as 1
1−ǫ (infQ,R∈RH∞

H(ǫ, Q, R,Γ)).

The dual function gives a lower bound of H∗
e (Γ) as

1

1 − ǫ

(

inf
Q,R∈RH∞

H(ǫ, Q, R,Γ)

)

≤ H∗
e (Γ).

Then Lemma 3.3 and the condition (3.7) guarantee that the bound is tight and the equality

is achieved by the right-hand side of (3.8).
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Remark 3.6 Define

H∗(ǫ) , inf
Q,R∈RH∞

H(ǫ, Q, R,Γ).

There may not exist a pair Q, R ∈ RH∞ to achieve H∗(ǫ). However, as discussed in

Remark 2.17, the value of the functional H(ǫ, Q, R,Γ) can be made arbitrarily close to

H∗(ǫ) by suitable choice of Qǫ, Rǫ ∈ RH∞ as ǫ → 0.

In later derivations, we shall need the allpass factorization (cf. Section 2.3.5) of the

transfer function matrix M̃Ψn, which shares the same nonminimum phase zeros as M̃ , but

their input directions are altered by the different noise levels (cf. (2.14)). Specifically, the

factorization takes the form

M̃(s)Ψn = M̃ (n)
m (s)F (s) (3.9)

where the matrix M̃
(n)
m (s) is minimum phase and F (s) is the allpass factor. Following the

same iterative procedure in constructing (2.13), we have

F (s) , Fl(s)Fl−1(s) · · ·F1(s) (3.10)

with

Fi(s) , I − 2Re{pi}
s + p̄i

ζiζ
H
i . (3.11)

The unitary vector ζi is a zero direction vector of M̃
(n)
m (s)Fl(s) · · ·Fi(s) and we explicitly

express the vector as
(

ζ1
i , . . . , ζm

i

)T
.

3.3 Stabilization

The power constraint of the parallel AWN channels determines the capacity and the

limitation they impose on the system. What is the lower bound on the power constraint

49



that ensures the stabilizability? The problem is mathematically equivalent to the feasi-

bility of (3.1) when the reference is zero, or the minimal Γ such that the feasibility set

̥ is nonempty. Thus, the necessary and sufficient condition on the power constraint for

stabilizability is given by

Γ > µ , inf
K∈K

E{‖u‖2}. (3.12)

From (3.2b) and (3.3b), we have

µ = inf
R∈RH∞

∥

∥

∥
N(Ỹ − RM̃)Ψn

∥

∥

∥

2

2
. (3.13)

As stabilization bears no relations to the reference input, it suffices to consider only one-

parameter controller, which has another form of parametrization given by K2 = (Y −

MR)(X−NR)−1 (see (2.6)). Then, after a simple calculation of the parameterized transfer

function T u
n , we have

µ = inf
R∈RH∞

∥

∥

∥

[

−I + (X − NR)M̃
]

Ψn

∥

∥

∥

2

2
. (3.14)

3.3.1 Minimum phase plants

The following result gives an explicit expression of µ for minimum phase plants.

Theorem 3.7 Suppose P is right-invertible and has unstable poles pi, i = 1, . . . , l. Suppose

further that M̃(s)Ψn is factorized as in (3.9). Then the feedback system is stabilizable if

and only if Γ > µm, where

µm = 2
l

∑

i=1

pi

m
∑

j=1

|ζj
i |2Φj . (3.15)

The requirement on the channel input for stabilizability depends not only on the un-

stable poles, but their input directions which is altered by the noise levels Ψn.
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Proof. The proof is concerned with the calculation of (3.13). For notation simplicity,

we define

H2 ,

∥

∥

∥N(Ỹ − RM̃)Ψn

∥

∥

∥

2

2
.

Then, a simple algebraic manipulation yields

H2 =
∥

∥

∥

(

−I +
(

(NỸ + I)M̃−1 − NR
)

M̃
)

Ψn

∥

∥

∥

2

2
.

If we let Z = (NỸ + I)M̃−1, it is true that Z ∈ RH∞. In fact, from the Bezout identity

X̃M − Ỹ N = I, we obtain NX̃ − NỸ P = P , which implies

NX̃ = (NỸ + I)M̃−1Ñ .

Since NX̃ ∈ RH∞ and Ñ ∈ RH∞ and is minimum phase, it follows that Z ∈ RH∞. We

then make use of the factorization (3.9) and the fact (F−1 − I) ∈ H⊥
2 to arrive at

µ =
∥

∥Ψn(F−1 − I)
∥

∥

2

2
+ inf

R∈RH∞

∥

∥

∥Ψn − (Z − NR) M̃ (n)
m

∥

∥

∥

2

2
,

and

inf
R∈RH∞

∥

∥

∥
Ψn − (Z − NR) M̃ (n)

m

∥

∥

∥

2

2
= 0.

Then,

µ =
∥

∥Ψn(F−1 − I)
∥

∥

2

2

=
l

∑

i=1

∥

∥

∥

∥

2Re{pi}
s − pi

Ψnζi

∥

∥

∥

∥

2

2

=

l
∑

i=1

∥

∥

∥

∥

2Re{pi}
s − pi

∥

∥

∥

∥

2

2

‖Ψnζi‖2 .

Lastly, by applying the residue theorem [48], we have

∥

∥

∥

∥

2Re{pi}
s − pi

∥

∥

∥

∥

2

2

= 2Re{pi},

and the theorem is proved.
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3.3.2 Nonminimum phase plants

The stabilization bound for Γ for nonminimum phase plants over uplink AWN channel

is given by the following theorem:

Theorem 3.8 Let P be right-invertible and have unstable poles pi, i = 1, . . . , l and non-

minimum phase zeros zi, i = 1, . . . , k. Then the feedback system is stabilizable if and only

if Γ > µn, and

µn = µm +
k

∑

i,j=1

4Re{zi}Re{zj}
z̄i + zj

vH
i vjw

H
j wi, (3.16)

where

vi ,





k
∏

j=i+1

Lj(zi)





−1

ηi,

wi ,
(

I − F−H(zi)
)

Ψn





i−1
∏

j=1

Lj(zi)





−H

ηi.

Proof. See Appendix A.1.

As expected, the presence of nonminimum phase zeros causes steeper requirement on

the power constraint of the AWN channel, especially when they are close to the unstable

poles, as captured by the term wi. It is conceivable that the tracking performance will be

affected in the same way as we show that it depends directly on µn.

We analyze the theorems by solving a few special cases. For SISO systems, Theorem 3.7

reduces to

Γ > µm = 2Φ

l
∑

i=1

pi (3.17)

52



With regard to SISO nonminimum phase systems and Theorem 3.8, we have the following

simplifications:

Li(s) =
s − zi

s + z̄i
F (s) =

l
∏

i=1

s − pi

s + p̄i

viw̄i =
√

Φ
(

1 − F−1(zi)
)

k
∏

j=1
j 6=i

zj + z̄i

zj − zi
.

Thus the stabilization condition reduces to

Γ > µn = Φ



2

l
∑

i=1

pi +

k
∑

i,j=1

ν̄iνj

z̄i + zj



 (3.18)

where

νi , 2Re{zi}(1 − F−1(zi))
k

∏

j=1
j 6=i

zj + z̄i

zj − zi
.

Thus, for SISO systems the SNR of the channel suffices to be an essential figure of merit.

Both results agree with those for continuous time systems in [9].

For MIMO systems, we assume that the plant has only one (real) pole, p with a right

pole direction ω. In this case, the direction vector ζ in (3.11) has a simple expression given

as

ζ =
Ψ−1

n ω

‖Ψ−1
n ω‖

.

It follows that

µm =
2p

∥

∥Ψ−1
n ω

∥

∥

2 .

Furthermore, if the plant has a single zero z along with its direction vector η, we have

v = η w =
2p

p − z
ζζHΨnη.

The stabilization condition reduces to

Γ >
2p

∥

∥Ψ−1
n ω

∥

∥

2

[

1 +

(

(

z + p

z − p

)2

− 1

)

cos2 ∠(η, ω)

]

.
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It is clear that the proximity of zero and pole location is detrimental and causes large

response at the channel input, thus a large channel input power is needed for stabilization.

Also, the power of channel input behaves differently depending on the alignment of zero

and pole directions. An orthogonal pair of directions completely eliminates the effect of

the real nonminimum phase zero on stabilization. Another interesting observation is that,

when the noise at any of the channel Φi is 0, then the total power of the channel input

for stabilization is also 0 because of the term
∥

∥Ψ−1
n ω

∥

∥

2
. The direction ζ is optimized to

be an Euclidean vector with 1 at the i-th element. Along this direction, the controller can

suppress the effect of the pole on all noise inputs except the i-th channel and thus zero the

plant output. However, this property does not carry over to plants with multiple poles.

If the plant contains multiple zeros, the expression of µ becomes cumbersome. But if

we follow (3.13) instead of (3.14), we obtain another equivalent form of µn which allows us

to derive the following result:

Γ >
2p

∥

∥Ψ−1
n ω

∥

∥

2

∥

∥L−1(p)ω
∥

∥

2
.

3.4 Optimal Tracking Performance

In this section, we shall look into the tracking performance under the AWN channel

constraints (3.1) provided that the problem is feasible or, equivalently, the system is stabi-

lizable. It appears that the less noisy the channel is, the better performance the system can

achieve. However, we will show that, sending the signal to the channel without processing,

the performance cannot be adequately improved by increasing the channel SNR.

In general, the power spectrum of the reference process has direct impact on the track-
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ing performance. For minimum phase plants, however, optimal tracking performance only

depends on the power of the reference.

3.4.1 Minimum phase plants

The following theorem characterizes the best tracking performance of the system de-

picted in Figure 3.1

Theorem 3.9 If P is minimum phase and has poles pi ∈ C+, i = 1, . . . , l. The power of the

reference process is σ2
r
. Then, under the condition Γ > µm where µm is defined in (3.15),

the best tracking performance is given by

H∗
e (Γ) =























(

√

σ2
r
−√

Γ − µm

)2
+ µm, if µm < Γ < Γmax,

µm, if Γ ≥ Γmax,

(3.19)

where Γmax , µm + σ2
r
.

Proof. See Appendix A.2.

It is well known that for minimum phase systems in the absence of communication

channels, perfect tracking can be achieved [19]. However, in a networked control setting,

the AWN channel imposes additional constraint. Indeed, when Γ ≥ Γmax, the tracking error

cannot be made smaller than µm. Thus it is no longer possible to recover perfect tracking

even when the channel power constraint goes to infinity. This performance downgrade is

due to the channel’s restriction on the feedback, since to track the reference input, the

power of the plant output cannot be allowed arbitrarily large and the channel may not be

efficiently utilized. To see it more clearly, we derive the channel input power under the
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optimal control scheme:

E{‖u‖2} =























Γ, if µm < Γ < Γmax,

Γmax, if Γ ≥ Γmax.

Therefore, the maximum channel input power consumed for optimal tracking is Γmax even

when Γ > Γmax. In the next subsection, we introduce and design scaling across the channel

to address the saturation of the channel input power.

3.4.1.1 Power allocation

The parallel AWN channels, as depicted in Figure 3.2, share a common input power

constraint and we examine how the power is allocated among each channel under the optimal

tracking scheme.

Corollary 3.10 Under the assumptions in Theorem 3.9, to achieve the best tracking per-

formance, the power distributed to the k-th AWN channel out of the total power Γ is given

by

E{u2
k} =























Γ−µm

σ2
r

σ2
rk + 2

l
∑

i=1
pi|ζk

i |2Φk, if µm < Γ < Γmax,

σ2
rk + 2

l
∑

i=1
pi|ζk

i |2Φk, if Γ ≥ Γmax.

Proof. Define the Euclidean vector ek , (0, . . . , 0, 1
k
, 0, . . . , 0)T . The power allocated

to the k-th channel can be evaluated using

E{u2
k} = ‖eT

k T u
r,nΨr,n‖2

2

= ‖eT
k NQ∗Ψr‖2

2 + ‖eT
k N(Ỹ − R∗M̃)Ψn‖2

2.
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+

+

n1

u1

nm

um

∑

i E{u2
i} ≤ Γ

Figure 3.2: Parallel AWN channel

For the first term, using the optimal parameters Q∗ as found in (A.9), we obtain that

‖eT
k NQ∗Ψr‖2

2 = ‖ (1 − ǫ∗) eT
k Ψr‖2

2

= (1 − ǫ∗)2 σ2
rk.

But (1 − ǫ∗) = 1/(1 + α∗) and it can be derived using (A.12).

For the second term, we make use of R∗ found in the proof of Theorem 3.7 and have

‖eT
k N(Ỹ − R∗M̃)Ψn‖2

2 =
∥

∥eT
k Ψn(F−1 − I)

∥

∥

2

2
.

Then we can prove the corollary after straightforward calculations.

We shall postpone the discussion of the power allocation result until after Corol-

lary 3.13.

3.4.2 Nonminimum phase plants

For general MIMO nonminimum phase plants, the power spectrum of the reference

signal together with nonminimum phase zeros incur additional penalties. We explicitly

characterize the optimal tracking performance (3.1) in the following theorem.

Theorem 3.11 Let the reference signal be specified as in Assumption 3.1 and have power

spectral factor Ψr. Suppose the plant P is right-invertible and has unstable poles pi, i =
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1, . . . , l and nonminimum phase zeros zi, i = 1, . . . , k. Let N(s) and M̃(s)Ψn be factorized as

in (2.7) and (3.9), respectively. The AWN channel has input power constraint E{‖u‖2} ≤ Γ.

Define

Z , L−1Ψr −
k

∑

i=1

2Re{zi}
s − zi

aib
H
i ,

where

ai , L−1
k (zi) · · ·L−1

i+1(zi)ηi,

bi , ΨH
r (zi)





i−1
∏

j=1

L−H
j (zi)



 ηi.

The best tracking performance is given by

H∗
e =























(

‖Z‖2 −
√

Γ − µn

)2
+ µn + δ, if µn < Γ < Γ

′

max,

µn + δ, if Γ ≥ Γ
′

max,

(3.20)

where Γ
′

max , µn + ‖Z‖2
2 and

δ ,

k
∑

i,j=1

4Re{zi}Re{zj}
z̄i + zj

aH
i ajb

H
j bi.

Proof. See Appendix A.3.

If the plant output is sent directly to the channel, the smallest tracking performance

achievable is µn+δ, which happens as Γ exceeds Γ
′

max. The term µn is due to the requirement

for stabilization on the channel, whereas δ is independent of the channel and marks the

effect of nonminimum phase zeros coupled with the reference input process. The result is

consistent with and similar to the additional constraint caused by nonminimum phase zeros

in standard control systems (cf. [15, 19, 62]). The theorem also shows explicitly how the

performance is limited when the channel power constraint is not adequate to cope with the

adverse effect of the reference input (characterized by ‖Z‖2
2).
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3.5 Optimal Tracking Performance with Scaling

As shown in Figure 3.3, we introduce a channel compensation strategy consisting of

a pre- and post-processing scheme via constant scaling. The scaling factor is defined by

Λ , diag{λ1, . . . , λm}, with λi ∈ R+, 1 ≤ i ≤ m. The idea lies in how to exploit the

channel to the maximum extent allowable under the power constraint, and at the same

time reduce the noise effect. We show explicitly how this simple or even naive scheme may

improve tracking performance, and how the scheme should be optimally designed.

+Λ−1 Λ

n

yu

Figure 3.3: Scaling for the AWN channel

For a general scaling factor Λ, we have the freedom to tune the input power for each

channel; however, it also rotates the direction of the vector signals in the system. Thus,

the scaling around the channel cannot be canceled for MIMO systems by completing the

closed loop. For this reason, it complicates the stabilization result as well as optimization.

For consistency with the stabilization results that should be a system property and for

simplicity, we shall consider the case Λ = λI, i.e. a uniform scaling factor λ that acts on

each channel. The optimal tracking problem can then be formulated as

minimize E{‖e‖2} (3.21a)

subject to E{‖u‖2} ≤ Γ, (3.21b)

K ∈ K, λ ∈ R+. (3.21c)
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In this case, the transfer function matrices are given by

T e
r,n =

[

I − NQ, − 1
λN(Ỹ − RM̃)

]

,

T u
r,n =

[

λNQ, N(Ỹ − RM̃)

]

.

And we note that Lemma 3.5 still holds with a simple modification that includes the scaling

factor. We define the same functional as (3.6), which depends on λ and can be expressed

as

H(ǫ, Q, R, λ,Γ) =

∥

∥

∥

∥

∥

∥

∥

∥









√
1 − ǫ(I − NQ)

λ
√

ǫNQ









Ψr

∥

∥

∥

∥

∥

∥

∥

∥

2

2

+

(

1 − ǫ

λ2
+ ǫ

)

∥

∥

∥
N(Ỹ − RM̃)Ψn

∥

∥

∥

2

2
− ǫΓ.

(3.22)

If there exists an interior point of (Q, R) such that (3.7) holds, then from the principle (2.30)

the optimal tracking performance is specified by

H∗
e (Γ) = inf

λ>0
He(Γ, λ), (3.23)

where

He(Γ, λ) = sup
0≤ǫ≤1

1

1 − ǫ

(

inf
Q,R∈RH∞

H(ǫ, Q, R, λ,Γ)

)

.

3.5.1 Minimum phase plants

It is shown in the following theorem that the tracking performance is inversely propor-

tional to the power constraint.

Theorem 3.12 Suppose that the plant, reference process and the channel satisfy the same

assumptions in Theorem 3.9. Consider the scaling depicted in Figure 3.3 with Λ = λI. The

best tracking performance is given by

H∗
e (Γ) = σ2

r

µm

Γ
, (3.24)
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which is achieved when the optimal scaling factor is

λ∗ =
Γ

√

σ2
r
(Γ − µm)

. (3.25)

Proof. The first part of the proof is similar to that of Theorem 3.9, only that we need

to consider λ as a design variable. We start with (3.22) and follow similar steps. The inner

matrix corresponding to (A.6) is given by

∆ =
1√

λ2ǫ + 1 − ǫ









−
√

1 − ǫI

λ
√

ǫI









and we can proceed following similar steps.

Define

H∗(ǫ, λ, Γ) , inf
Q,R∈RH∞

H(ǫ, Q, R, λ,Γ).

Then,

H∗(ǫ, λ, Γ) =
λ2ǫ(1 − ǫ)

λ2ǫ + 1 − ǫ
σ2

r
+

(

1 − ǫ

λ2
+ ǫ

)

µm − ǫΓ.

Also define the Lagrange multiplier as α = ǫ/(1 − ǫ), then

He(Γ, λ) = sup
α>0

(

αλ2

1 + αλ2
σ2

r
+

1

λ2
µm + α(µm − Γ)

)

.

The optimal α is given by

α∗ =

√

σ2
r

λ
√

Γ − µm
− 1

λ2
(3.26)

and it follows that

He(Γ, λ) =
Γ

λ2
− 2

√

(Γ − µm)σ2
r

λ
+ σ2

r
,

which achieves its minimum at (3.25).
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Not surprisingly, by optimally designing the scaling factor, the power of the channel

input is active at Γ and the noise effect on the system is suppressed. The tracking perfor-

mance is improved, more significantly when Γ > Γmax, by this simple scaling scheme. Only

in the limit when Γ → ∞, i.e., the channel has no input power constraint, the system can

achieve zero tracking error that is comparable with the perfect tracking of step signal for

standard minimum phase control systems [19]. Therefore for feedback control over AWN

channels, an additional limitation on the tracking performance results, which persists even

when an extra design freedom is made available in selecting the scaling factor.

3.5.1.1 Power allocation

The power allocation is similar to Corollary 3.10 except that the saturation case when

Γ > Γmax is eliminated by the design of the scaling.

Corollary 3.13 Under the optimal scaling and control scheme in Theorem 3.12. The power

allotment for the k-th channel out of the total power constraint Γ is

Γ − µm

σ2
r

σ2
rk + 2

l
∑

i=1

pi|ζk
i |2Φk.

For achieving the optimal tracking performance, the power allocation policy essentially

resembles “fire-quenching” as Corollary 3.10 and 3.13 demonstrate that the controller allo-

cates more power to more problematic channels, i.e. the channel that has a greater noise

power or has to deal with a stronger reference input. This strategy departs fundamentally

from Shannon’s classical “water-filling” solution [20, 66], which gives more power to better

channels and aims at maximizing channel capacity. This deviation reflects from another per-

spective that channel capacity is generally not suitable for the characterization of feedback
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control over communication channels.

3.5.1.2 SISO systems

There are no spatial properties involved for SISO systems and the result for tracking

will be further simplified as a function of the SNR.

Corollary 3.14 Let P be a scalar transfer function, minimum phase and have unstable

poles pi, i = 1, . . . , l. Also, let Φ denote the power spectral density of n. Then the system is

stabilizable if and only if

Γ

Φ
> 2

l
∑

i=1

pi.

Under this condition, the best tracking performance is

H∗
e = σ2

r

(

2
l

∑

i=1

pi

)

Φ

Γ
.

3.5.1.3 Fully decentralized structure

Here we consider the general scaling Λ around the AWN parallel channels as shown

in Figure 3.4. We shall, however, impose constraints on the structure of the system. To

be more specific, we assume that it is fully decentralized: the controller and the plant

have the same number of input as the output and they are completely decoupled, i.e.

P (s) = diag{P1(s), . . . , Pm(s)}. Then it is equivalent to considering separately different

SISO systems/agents except that the output of the plant is fed back via parallel AWN

channels sharing a common power constraint, Γ. This scenario is applicable when we have

a few independently controlled systems, but the measured outputs are sent jointly through

an MIMO communication channel to the controllers.
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Figure 3.4: Tracking over parallel AWN channel with scaling

We assume that each SISO plant Pi is minimum phase1. Further assume that the

stabilization threshold for Pi over an AWN channel is µi. As we have individual scaling

factor for each SISO system, we may apply Corollary 3.14 and have the tracking performance

for the i-th agent as

J∗
i = σ2

ri

µi

γi
,

under the condition γi ≥ µi, where γi is the input power allocated for the i-th channel. We

shall study the best achievable tracking performance and power allocation problem of such

systems under the total power constraint Γ. The problem can be formulated as a convex

optimization problem:

minimize

m
∑

i=1

σ2
ri

µi

γi

subject to γi ≥ µi, 1 ≤ i ≤ m,
m

∑

i=1

γi = Γ.

The solution is summarized in the following corollary:

Corollary 3.15 Assume that the control system in Figure 3.4 is decoupled and have m

1This assumption is for the simplicity of the result. The nonminimum phase case can be derived similarly,
with assumptions on the reference input and an additional term caused by the nonminimum phase zeros.
(See the theorems of the next section.)
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inputs and outputs. If Γ >
∑m

i=1 µi, then the optimal tracking performance is given by

m
∑

i=1

σ2
ri

µi

γ∗
i

,

where

γ∗
i = max

{

µi, σri

√

µi

ν∗

}

with ν∗ determined from
m

∑

i=1

max

{

µi, σri

√

µi

ν∗

}

= Γ.

Proof. This problem can be solved using Lagrange multipliers. Introducing Lagrange

multipliers λ∗ ∈ Rm for the inequality constraints and a multiplier ν∗ ∈ R for the equality

constraint, we obtain the Kuhn-Tucker conditions [7]

γ∗
i − µi ≥ 0, 1 ≤ i ≤ m,

m
∑

i=1

γ∗
i = Γ,

λ∗ ≥ 0 λ∗
i (γ

∗
i − µi) = 0,

−σ2
riµi

γ∗2
i

− λ∗
i + ν∗ = 0, 1 ≤ i ≤ m.

By eliminating λ∗, we obtain

γ∗
i − µi ≥ 0, 1 ≤ i ≤ m,

m
∑

i=1

γ∗
i = Γ, λ∗ ≥ 0

(ν∗ − σ2
riµi

γ∗2
i

)(γ∗
i − µi) = 0, ν∗ ≥ σ2

riµi

γ∗2
i

, 1 ≤ i ≤ m.

If ν∗ < σ2
ri/µi, the last condition can only hold if γ∗

i > µi, but it implies ν∗ =
σ2

riµi

γ∗2

i

. The

optimal γi is given by

γ∗
i = σri

√

µi

ν∗ , if ν∗ < σ2
ri/µi.

On the other hand, if ν∗ ≥ σ2
ri/µi, we have ν∗ > σ2

riµi/γ∗2
i , which implies

γ∗
i = µi, if ν∗ ≥ σ2

ri/µi.
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Therefore, we have

γ∗
i =























σri

√

µi

ν∗ if ν∗ < σ2
ri/µi,

µi if ν∗ ≥ σ2
ri/µi.

or γ∗
i = max{µi, σri

√

µi/ν∗}. Substituting this expression for γ∗
i into

∑m
i=1 γ∗

i = Γ we obtain

m
∑

i=1

max{µi, σri

√

µi

ν∗ } = Γ.

Then ν∗ can be determined from the above equation, and the optimization problem is

solved.

Corollary 3.15 shows a seemingly different but fundamentally similar result as Corol-

lary 3.10 and 3.13. It agrees with the “fire-quenching” rules: allocating more power to a

more demanding or problematic channel, which corresponds to a system with higher degree

of instability µi, or a system to track a more dynamic reference process with bigger variance

σ2
ri. In contrast, the classic “water-filling” strategy takes advantage of stronger channels

and cares less or even none about weaker channels [66]. This strategy, when assessing the

tracking performance, will cause unacceptably tracking error on the weaker channel and the

system utilizing it.

3.5.2 Nonminimum phase plants

Comparing with Theorem 3.11, the tracking performance with scaling is improved in

the same way as the minimum phase systems depicted above. As expected, the nonminimum

phase zeros cause an additional performance constraint δ that cannot be rectified by the

scaling.
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Theorem 3.16 Let the plant satisfy the assumptions in Theorem 3.11. Consider the scaling

around the channel depicted in Figure 3.3 with Λ = λI. Then the best tracking performance

is

H∗
e (Γ) = ‖Z‖2

2

µn

Γ
+ δ, (3.27)

which is achieved when the optimal scaling factor is

λ∗ =
Γ

‖Z‖2

√

(Γ − µn)
.

Proof. The proof combines the steps in Theorem 3.11 and Theorem 3.12. The inter-

mediate steps, which are omitted here, lead to

H∗(ǫ, λ, Γ) = (1 − ǫ)δ +
λ2ǫ(1 − ǫ)

λ2ǫ + 1 − ǫ
‖Z‖2

2 +

(

1 − ǫ

λ2
+ ǫ

)

µm − ǫΓ.

It follows that

He(Γ, λ) = sup
α>0

(

δ +
αλ2

1 + αλ2
‖Z‖2

2 +
1

λ2
µm + α(µm − Γ)

)

.

The result can then be proved by proceeding identically as the proof of Theorem 3.12.

3.6 Examples

In this section, we use an SISO plant model to calculate and illustrate the preceding

results. We detail the reference signal first. We assume that the power spectral factor of

the reference signal r(t) is given by

Ψr(s) = c

√−2pr

s − pr

where pr < 0 is the stable pole and c > 0 is the amplitude. Defined in this way, r(t) is

a special type of random telegraph signal [49]. In particular, r(t) assumes the values ±c,
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Figure 3.5: Standard block diagram of interconnecting the systems G and K

r(0) = c or −c with probability 1/2 and it switches polarity with each occurrence of an

event in a Poisson process of rate −pr/2.

In light of (3.17), the tracking performance in Theorem 3.9 is (3.19) with µm =

Φ2
∑l

i=1 pi and σr = c.

On the other hand, for plants with a real nonminimum phase zero z, we consider

Theorem 3.11. Then, according to (3.18), we have

µn = Φ

(

2
l

∑

i=1

pi + 2z
∣

∣1 − F−1(z)
∣

∣

2

)

. (3.28)

The quantity Z reduces to L−1(pr)Ψr(s) and therefore

‖Z‖2
2 = c2

(

pr + z

pr − z

)2

. (3.29)

Finally, the extra term δ is given by

c2 −4zpr

(z − pr)2
. (3.30)

Then we are able to calculate the tracking performance (3.20).

We compare the theoretical results with numerical results calculated by the robust con-

trol toolbox of MATLAB. For the latter purpose it is possible to formulate and numerically

derive the optimal tracking performance as a form of general H2 optimal control problem

for a specified ǫ. In this case the generalized plant G, as depicted in Figure 3.5, contains
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the plant model, the interconnection structure and the weighting factors [60]. Specifically,

we have
























0
√

1 − ǫΨr −
√

1 − ǫP

0 0 λ
√

ǫP

0 Ψr 0

1
λ 0 P









































n

w

u

















=

























√
1 − ǫe

λ
√

ǫy

r

y + 1
λn

























where n and w are the white noise input, u the controller output, λy is the channel input

and y + 1
λn is the channel output. The perturbation method [55] is applied to circumvent

singular H2 control formulation. Then, we seek the performance by linearly searching for

ǫ, and λ if scaling factor is utilized.

We are about to study the plant

P1(s) =
s − z1

s2 − 2s + 4

which has a zero z1 and a conjugate pair of unstable poles 1 ± j
√

3. We fix the amplitude

of the reference signal c = 2 and the pole pr = −2. The power spectral density Φ of the

white noise is 1.

3.6.1 Weighted performance and the effect of nonminimum phase zeros

We shall consider two cases: z1 = −1/2 and z1 = 1/2. For each case we let ǫ very

from 0 to 1 and compute H∗(ǫ) (defined in Remark 3.6) when Γ = 0. The result represents

the weighted power of tracking error and channel input. We compare the optimal solution

by using MATLAB and the expression (A.10). Figure 3.6 shows these two computations

match exactly. For the following figures we omit the comparisons for clearness, with the

understanding that they match very well.
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Figure 3.6: H∗(ǫ) for plant P1, for z1 = −0.5 and 0.5. The amplitude of the reference is

c = 2 and its pole is pr = −2.

Also from the figure we can see that the presence of a nonminimum phase zero worsens

the performance. To illustrate this point, we plot µn as in (3.28), δ as in (3.30), ‖Z‖2
2

as in (3.29) and the weighted performance at ǫ = 0.5 versus z1 in Figure 3.7. Derived

from (3.28), the expression for µn in Figure 3.7 is

µm + 2z1

(

1 −
∣

∣

∣

∣

z1 + p1

z1 − p1

∣

∣

∣

∣

2
)2

where p1 = 1 + j
√

3. It can be seen that the nonminimum phase behavior of the plant,

which is characterized by µn, dominates. At the peak of µn, which is achieved at about

z1 = 2.6, the systems has very steep stabilization requirement and thus the performance is

poor.

70



0 2 4 6 8 10 12
0

5

10

15

20

25

z
1

P
ow

er

 

 
µ

n

δ
H2 norm of Z
Performance ε=0.5

Figure 3.7: The effect of nonminimum phase behavior on the performance with respect to

the location of z1.

3.6.2 Lagrangian and the optimal tracking performance for different power

constraints

We first investigate minimum phase systems and set z1 = −1/2. The Lagrangian

φ(ǫ) , H∗(ǫ)/(1−ǫ), is plotted against ǫ for a few values of Γ using Robust Control Toolbox.

The maximum values of φ(ǫ), indicated as stars, are the optimal tracking performance H∗
e .

In Figure 3.8, the optimal tracking error decreases as Γ goes up until Γmax = µm +σ2
r which

is 8. After this point, the best performance we can achieve is µm = 4. The optimal values

admit a quadratic relationship with
√

Γ and are in agreement with (3.19).

The performance for nonminimum phase systems with z1 = 1/2 is depicted in Fig-

ure 3.9. The Lagrangian behaves similarly with ǫ and Γ. As expected, the performance is
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Figure 3.8: φ(ǫ) against ǫ for Γ from 4.5 to 8.5. The stars represent H∗
e .

worse. The range of the effective power constraint is from µn = 4.38 to Γ
′

max = µn+‖Z‖2
2 =

5.82. Hence Γ = 6 and Γ = 6.4 have the same value for H∗
e . The best achievable performance

is µn + δ = 6.94. The figure is consistent with (3.20).

3.6.3 Optimal tracking performance against power constraint

We plot the optimal tracking performance against the power constraint in Figure 3.11a.

We vary the nonminimum phase zero in a small range but it affects the performance greatly.

It is consistent with the nonminimum phase effect depicted in Figure 3.7.

The values of Γ
′

max for the nonminimum phase zero at 0.5, 0.7 and 0.9 are 5.82, 6.08

and 7.15, respectively. From the tips in the figure we can see that, when Γ goes beyond the

corresponding values above, the performance will stay at 6.94, 8.22 and 10.00, respectively.

It thus confirms that the performance cannot go below µn + δ, as indicated in (3.20).
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Figure 3.9: φ(ǫ) against ǫ for P1(s) with a nonminimum phase zero at 0.5 and Γ from 4.4

to 6.4. The stars represent H∗
e .

3.6.4 Optimal tracking performance with scaling

Finally we examine the effect of scaling on the optimal tracking performance, as de-

picted in Figure 3.10. With optimal design of the scaling factor, as the power constraint

increases, the optimal tracking error decreases but it will converge to δ = 2.56 and cannot

go below it. The values of H∗
e at λ = 1, which gather around 6.9 except the Γ = 4.4 curve,

correspond to the optimal values in Figure 3.9. Direct comparisons among these two figures

and the z1 = 0.5 curve in Figure 3.11a show significant performance improvement by adding

one degree of freedom in selecting the scaling factor. The figure matches the result in (3.27)

exactly.

We also plot the tracking performance versus the power constraint with optimized

scaling in Figure 3.11b. The comparison in Figure 3.11 proves the obvious advantage of
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Figure 3.10: H∗
e (λ) against the scaling factor λ for plant P1 with z1 = 0.5. The circles

represent the best tracking performance with optimal scaling. For the curve Γ = 4.4, the

optimal λ is 21.

using the scaling: not only that as Γ increases, the smallest tracking error will inverse-

proportionally tend to δ, but when Γ is arbitrarily close to the stabilization threshold µn

from above, the worst tracking error ‖Z‖2
2+δ = σ2

r = 4 is still below the optimal performance

without the scaling.

3.7 Summary

In this chapter, we study the H2 optimal tracking performance of LTI feedback systems

over uplink AWN channels. Our work explores the area of performance characterizations

of NCS’s; our primary objective is to explore the relation between the known limitations

caused by the interaction of control systems and the characteristics of the communication
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Figure 3.11: Comparison between the performance with and without scaling. (a) H∗
e against

Γ for three values of z1. The ticks represent the values of Γ
′

max (b) H∗
e against Γ with scaling.

For both cases, the power constraint Γ must be greater than the stabilization requirement,

otherwise the tracking error is infinite.

75



channel for MIMO systems.

Analytical solutions show that the tracking performance is a quadratic function with

respect to the square root of the power constraint before it stays at the vertex. The unsta-

ble poles and nonminimum phase zeros, together with the strength of noise and reference

signal affect mostly the stabilization requirement for the channel, which also determine the

vertex of the tracking performance. The proximity of the nonminimum phase zeros and

the unstable poles are most harmful, which is similar to tracking in standard control sys-

tems. We have also considered a simple scaling scheme, through which the channel is better

utilized. The tracking performance with optimized scaling is inversely proportional to the

power constraint and can reach zero in limiting case. Moreover, we have derived the optimal

power allocation policy, which exhibits a “fire-quenching” strategy, allocating more power

to more problematic channels, as opposed of Shannon’s classical “water-filling” solution.
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Chapter 4

Tracking Performance over

Downlink Channel

4.1 Introduction

In this chapter, we formulate and study another tracking problem with a different con-

figuration: we assume that the communication is placed at the downlink. In this scenario,

the controller output to the plant is corrupted by the additive white noise and subject to

the power constraint. The results for stabilization are analogous to that of the uplink case.

We shall show, however, that the best tracking performance depends on not only unstable

poles and noise strength, but the plant’s minimum phase behavior and gain in the entire

frequency range, which has not been observed previously.

The rest of the chapter is organized as follows: Section 4.2 defines the problem math-

ematically and makes assumptions. Section 4.3 investigates the stabilization problem for

MIMO systems over the downlink channel. Section 4.4 derives lower bounds of the optimal
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tracking performance for minimum phase MIMO systems by decomposing the problem into

noise attenuation and noise-free reference tracking.

4.2 Problem formulation

The configuration is depicted in Figure 4.1. The optimal tracking problem of interest

is still given by (3.21) and is equivalent to

minimize ‖T e
r,nΨr,n‖2

2

subject to ‖T u
r,nΨr,n‖2

2 ≤ Γ, Q, R ∈ RH∞, λ > 0.

(4.1)

The transfer functions are given by

T e
r,n =

[

I − (I − PK2)
−1 PK1, − 1

λ (I − PK2)
−1 P

]

,

T u
r,n =

[

λ (I − K2P )−1 K1, (I − K2P )−1 K2P

]

.

We can parameterize the transfer functions via the Youla parametrization (2.5) and

obtain

T e
r,n =

[

I − NQ, − 1
λN(X̃ − RÑ)

]

,

T u
r,n =

[

λMQ, −I + M(X̃ − RÑ)

]

.

(4.2)

Assumption 4.1 The plant transfer function matrix P (s) is invertible for some s ∈ C.

The assumption is stronger than Assumption 3.2. It is needed since to counter the channel

noise at the plant input, the plant also needs to be of full column rank. Suppose that the

plant has simple nonminimum phase zeros zi ∈ C+, i = 1, . . . , k and unstable poles pi ∈ C+,
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Figure 4.1: Tracking with AWN channel in the downlink

i = 1, . . . , l. We shall need the following factorizations (cf. (2.13) and (3.9)) as

Ñ(s)Ψn = Ñ (n)
m (s)G(s), (4.3)

M(s) = B(s)Mm(s), (4.4)

where the all-pass factor G(s) can be constructed as

G(s) , Gk(s)Gk−1(s) · · ·G1(s). (4.5)

with

Gi(s) , I − 2Re{zi}
s + z̄i

ρiρ
H
i (4.6)

where ‖ρi‖2 = 1.

Likewise, as shown in Lemma 2.10, the all-pass factor B(s) is given by

B(s) ,

l
∏

i=1

Bi(s). (4.7)

with

Bi(s) , I − 2Re{pi}
s + p̄i

ωiω
H
i , (4.8)

and we spell out the vector ω as
(

ω1
i , . . . , ω

l
i

)T
. In addition, the factors Ñ

(n)
m and Mm are

minimum phase.
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4.3 Stabilization

For MIMO systems, the stabilization result is slightly different from that of the uplink

case. The necessary and sufficient condition on the power constraint for stabilizability is

given by (cf. Section 3.3)

Γ > µ,

where, in light of the factorization (4.4),

µ = inf
R∈RH∞

∥

∥

∥

(

I − M
(

X̃ − RÑ
))

Ψn

∥

∥

∥

2

2

=
∥

∥

(

B−1 − I
)

Ψn

∥

∥

2

2
+ inf

R∈RH∞

∥

∥

∥

(

I − Mm

(

X̃ − RÑ
))

Ψn

∥

∥

∥

2

2
.

4.3.1 Minimum Phase Plants

As the plant is of full column rank, so is Ñ . It is thus possible to define a free parameter

in RH∞ as R0 , X̃ − RÑ . It follows that

µ =
∥

∥

(

B−1 − I
)

Ψn

∥

∥

2

2
+ inf

R0∈RH∞

‖(I − MmR0)Ψn‖2
2

=
∥

∥

(

B−1 − I
)

Ψn

∥

∥

2

2
,

since ‖(I − MmR0) Ψn‖2
2 is 0 by appropriately choosing R0.

Theorem 4.2 Suppose the plant transfer function matrix is left-invertible, minimum phase

and has unstable poles pi, i = 1, . . . , l. Then the closed-loop system over the AWN channel

shown in Figure. 4.1 is stabilizable if and only if

Γ > µm
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where

µm = 2

l
∑

i=1

pi

m
∑

j=1

|ωj
i |2Φj .

4.3.2 Nonminimum Phase Plants

The derivations of stabilization requirement of the downlink channel bears a similar

fashion to Theorem 3.8. We make use of the factorization (4.5) to derive

µ = µm + inf
R∈RH∞

∥

∥

∥

(

I − MmX̃
)

ΨnG−1 − MmRÑ (n)
m

∥

∥

∥

2

2
.

Then we may apply Lemma 2.18 as in the proof of Theorem 3.8 and prove the following

theorem.

Theorem 4.3 Suppose the plant transfer function matrix is left-invertible and has both

unstable poles pi, i = 1, . . . , l and nonminimum phase zeros zi, i = 1, . . . , k. Then the

feedback system shown in Figure 4.1 is stabilizable if and only if

Γ > µm +

k
∑

i,j=1

4Re{zi}Re{zj}
z̄i + zj

cH
i cjd

H
j di,

where

ci ,
(

I − B−1(zi)
)

Ψn





i−1
∏

j=1

G−1
j (zi)



ρi,

di ,





k
∏

j=i+1

G−1
j (zi)





H

ρi.

Both theorems are similar to those for the uplink case. The difference stems from the

spatial properties of MIMO systems. It is obvious that for SISO systems they share the

same result as the uplink case.
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4.4 Performance

To evaluate the tracking performance (4.1), we define the functional

J(ǫ, λ, Q, R) , (1 − ǫ)‖T e
r,nΨr,n‖2

2 + ǫ
(

‖T u
r,nΨr,n‖2

2 − Γ
)

= J1(Q) + J2(R) − ǫΓ

for ǫ ∈ [0, 1], where

J1(Q) ,

∥

∥

∥

∥

∥

∥

∥

∥









√
1 − ǫ(I − NQ)

λ
√

ǫMQ









Ψr

∥

∥

∥

∥

∥

∥

∥

∥

2

2

,

and

J2(R) ,

∥

∥

∥

∥

∥

∥

∥

∥

1

λ









√
1 − ǫN

(

X̃ − RÑ
)

λ
√

ǫ
(

I − M
(

X̃ − RÑ
))









Ψn

∥

∥

∥

∥

∥

∥

∥

∥

2

2

.

Since Lemma 3.3 and 3.5 hold for the transfer functions (4.2), the optimal tracking

performance can be specified by

J∗
e = inf

λ>0
Je(λ), (4.9)

where

Je(λ) = sup
0≤ǫ≤1

1

1 − ǫ
J∗, (4.10)

and

J∗ , inf
Q,R∈RH∞

J(ǫ, λ, Q, R).

The functional J exhibits a separation property between Q and R, and r and n, respec-

tively, due to the two-parameter controller and that r and n are uncorrelated. We thus break

down the problem into two parts. We begin with the evaluation of J∗
2 , infR∈RH∞

J2(R),

which amounts to a noise attenuation problem. Then, we analyze the tracking performance

with power constraint in a noise-free setting. The combination of the two yields J .
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4.4.1 Noise attenuation

When the reference input is zero, (4.1) becomes a problem of minimizing the power of

the plant output with channel input power constraint. It follows that the functional J2(R)

is the performance measure, which induces a two-block H2 control problem. The following

assumption is necessary for J2 to be finite.

Assumption 4.4 The plant transfer function matrix P is strictly proper.

The following lemma gives an analytical expression for the optimal performance J∗
2 for

minimum phase plants.

Lemma 4.5 Suppose that P is strictly proper, minimum phase and it has poles pi ∈ C+, i =

1, . . . , l. Introduce the inner-outer factorization









√
1 − ǫN

−λ
√

ǫMm









= ΘiΘo. (4.11)

With ei denoting the Euclidean vector, define the functions

gi(s) , λ2ǫeT
i Mm(s)Θ−1

o (s)Θ−T
o (∞)MT

m(∞)ei

for 1 ≤ i ≤ m, which are diagonal terms of the matrix. Then

J∗
2 = ǫµm + Ĵ2 (4.12)

where

Ĵ2 ,
ǫ

π

∫ ∞

−∞

m
∑

i=1

Φi (1 − Re{gi(jω)}) dω (4.13a)

≥ J2L ,
ǫ

π

(

m
∑

i=1

Φi

)

∫ ∞

0
log

(

1 +
1 − ǫ

λ2ǫ
σ2 [P (jω)]

)

dω (4.13b)
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Furthermore, for SISO systems, the optimal noise attenuation performance is

J∗
2 = ǫΦ

(

2
l

∑

i=1

pi +
1

π

∫ ∞

0
log

(

1 +
1 − ǫ

λ2ǫ
|P (jω)|2

)

dω

)

.

Proof. See Appendix A.4.

4.4.2 Tracking

Because of the power constraint on the control signal, the tracking performance J∗
1 ,

infQ∈RH∞
J1(Q) depends on the spectral factor of the reference process. As the deriva-

tion for general reference input processes is difficult, in subsequent developments, we shall

consider a specific reference input process that resembles a deterministic step signal. Specif-

ically, the reference r(t) is a vector of zero-mean processes and each component is the output

of the integrator system 1/s with its input as a white noise process with variance σ2
ri. The

power spectral factor of r(t) is thus given by Ψr(s) = 1
sdiag{σr1, . . . , σrn}. The process can

be used to model a slowly varying random variable [52].

We consider the problem of tracking the reference with power constraint in a noise-

free setting, and J1(Q) serves as the performance measure. It requires the plant contains

integrators for the tracking performance to be bounded due to the special form for Ψr, thus

Assumption 4.6 The plant P has a pole at s = 0.

The following lemma characterize an analytical expression for the optimal performance J∗
1

for minimum phase plants.

Lemma 4.7 Suppose that Assumption 4.6 holds. Also suppose P is minimum phase and

has poles pi ∈ C+, i = 1, . . . , l. The inner-outer factorization is given by (4.11). Define the
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functions

fi(s) , (1 − ǫ)eT
i N(s)Θ−1

o (s)Θ−T
o (0)NT (0)ei (4.14)

for 1 ≤ i ≤ n. Then

J∗
1 =

1 − ǫ

π

∫ ∞

−∞

n
∑

i=1

σ2
ri

1 − Re{fi(jω)}
ω2

dω (4.15a)

≥ J1L ,
1 − ǫ

π
σ2

r

∫ ∞

0

1

ω2
log

(

1 +
λ2ǫ

(1 − ǫ)σ̄2 [P (jω)]

)

dω (4.15b)

Furthermore, for SISO systems, the optimal tracking performance is

J∗
1 =

(1 − ǫ)σ2
r

π

∫ ∞

0

1

ω2
log

(

1 +
λ2ǫ

(1 − ǫ) |P (jω)|2
)

dω.

Proof. See Appendix A.5.

4.4.3 Tracking over downlink channel

The following theorem gives an analytical characterization of J∗ and is an immediate

consequence of Lemma 4.5 and Lemma 4.7.

Theorem 4.8 Suppose that P is strictly proper, contains an integrator, minimum phase

and it has poles pi ∈ C+, i = 1, . . . , l. Define Φs =
∑

i Φi. Then

J∗ = J∗
1 + J∗

2 − ǫΓ (4.16)

≥ ǫ (µm − Γ) + J1L + J2L. (4.17)

The lower bound for the best tracking performance is given by

Je(λ) ≥ JR + JN + α∗ (µm − Γ) (4.18)
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where

JR ,
1

π
σ2

r

∫ ∞

0

1

ω2
log

(

1 +
λ2α∗

σ̄2 [P (jω)]

)

dω

JN ,
α∗

π
Φs

∫ ∞

0
log

(

1 +
σ2 [P (jω)]

λ2α∗

)

dω,

and α∗ is the positive solution to the following equation

π(Γ − µm) = σ2
r

∫ ∞

0

1

ω2

1

σ̄2 [P (jω)] /λ2 + α∗ dω

+ Φs

∫ ∞

0

[

log

(

1 +
σ2 [P (jω)]

λ2α∗

)

− σ2 [P (jω)]

λ2α∗ + σ2 [P (jω)]

]

dω. (4.19)

Furthermore, for SISO systems, we have σ2
r

= σ2
r , Φs = Φ and σ2 [P (jω)] = σ̄2 [P (jω)] =

|P (jω)|2, and the lower bound is attained.

With the communication constraint at the downlink, the tracking performance not

only depends on the unstable poles for stabilization, but also exhibits competing objectives

related to the plant gain at entire frequency range and minimum phase zeros close to the

imaginary axis. The latter is true because in the vicinity of such zeros, the term |P (jω)| is

small, which commands a large value for the integral in JR. Theorem 4.8 incorporate these

factors among unstable poles, power constraint and noise level; and the optimal tracking

performance reconciles all the tradeoffs.

The AWN channel in the downlink imposes additional constraints that we have not

seen in tracking in a standard control system or over uplink AWN channels. It is a result

of directly limiting the control action with the channel input power constraint.

We have not derived an analytical expression for the optimal scaling, but a numerical

result can always be found via Theorem 4.8. For SISO systems, we examine two special

cases when the channel SNR goes to infinity, and show the roles played by scaling. On one
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hand, if the power constraint Γ → ∞, from (4.19) we have α∗ = 0. It then implies that

J∗
e = 0, the zero tracking error. On the other hand, if the noise power is 0, then µm = 0 and

JN = 0. The optimal Lagrangian multiplier α∗(λ) (nonzero if Γ is finite) can be obtained

from the equation

σ2
r

∫ ∞

0

1

ω2

1

|P (jω)|2 /λ2 + α∗
dω = πΓ. (4.20)

Then, the optimal λ is selected such that α∗(λ) = 0, which implies α∗λ2 = 0. Therefore,

the tracking performance J∗
e = 0. However, it is achieved through controlling the channel

input power by scaling. Hence, perfect tracking can be achieved when the AWN channel is

ideal, for either non power-constrained or noise-free channel.

4.5 Summary

In this chapter, we investigate the limitations on the tracking performance of LTI

feedback systems over downlink AWN channels. Although the system configuration and

problem formulation are similar to the previous chapter, the results incorporate new and

previously unobserved perspectives, the most important of which is the minimum phase

behavior. In fact, the tracking performance over downlink, in addition to unstable poles

and power constraint, depends on the plant gain over the entire frequency range. In this

case, certain minimum phase zeros, especially ones that are close to the imaginary axis, will

greatly worsen the performance. Hence, perfect tracking is not possible even if the plant is

both minimum phase and stable. For MIMO plants, the performance bound is related to

the largest and smallest singular value of the plant transfer function matrix at the entire

frequency range.
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Chapter 5

Limitations on Stabilization over

Both Uplink and Downlink

Channels

5.1 Introduction

As we have discussed in Section 1.2.2 and Section 1.2.3, there have been actively-studied

and well-developed results on stabilization of feedback control systems over either the up-

link or downlink communication channel while assuming the other direction is noiseless.

However, few efforts have been made towards analysis of control systems with channels in

both directions. An exception is the recent paper [69]. That paper considers stochastic but

scalar LTI systems driven by Brownian motion process and uses the notion of stochastic

stability of Markov chain to study the necessary and sufficient conditions on the channels
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and controllers for stabilizability. In this chapter, we address the stabilizability problem of

LTI systems over both uplink and downlink AWN channels while staying in the framework

we established in previous chapters. Thus, we only consider LTI control laws and scaling

of the channels, rather than complicated coding/decoding schemes with memory. The sys-

tems we study include discrete-time scalar unstable system and continuous time systems

with only a single unstable pole.

The remainder of the chapter is organized as follows. Section 5.2 formulates the prob-

lem. Section 5.3 discusses the stabilization of discrete-time scalar systems via state feedback

over the uplink and downlink channels. As state feedback cannot stabilize the continuous-

time scalar systems, we employ one- and two-parameter dynamic controller on the output

feedback to achieve stabilizability, as discussed in Section 5.4.

5.2 Problem Formulation

The system configuration is depicted in Figure 5.1. The AWN channels have power

constraints E{u2
1} ≤ Γ1 and E{u2

2} ≤ Γ2, respectively. The constant scaling is represented

by λ1 and λ2. The noise n1 and n2 are uncorrelated zero-mean white noise processes.

The problem is to search for the lower bound on the input power of the uplink channel

over stabilizing controllers when the input power of the downlink channel is constrained:

minimize E{u2
1}

subject to E{u2
2} ≤ Γ2, K ∈ K, λ1, λ2 > 0.

(5.1)

The solution gives a separation line between what is achievable and what is not for stability,

and the region of SNR pairs that guarantees it.
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Figure 5.1: Stabilization over two AWN channels

5.3 Stabilization of discrete-time scalar systems

In this section, we consider the stabilization of a discrete-time scalar system, as depicted

in Figure 5.2. The controller amounts to the state feedback gain k and accesses the state

information through the uplink channel (hence we do not have the exact state information)

and the controller output is sent to the plant through the downlink channel.

Accordingly, we consider the LTI systems described in state-space by

x[t + 1] = αx[t] + u[t]

where t is the discrete-time variable, x[t] ∈ R is the plant state, and |α| > 1. The plant

input is thus u[t] = k(x[t]+n1[t]/λ1)+n2[t]/λ2. The feedback gain must satisfy |α+k| < 1

to internally stabilize the system. With a slight abuse of notation, we denote the variance

of the white noise processes n1 and n2 by Φ1 and Φ2, respectively.

Recall from Section 1.2.3 that if there is only a single channel at either uplink or

downlink while the other one is noise-free, the fundamental lower bound on channel capacity

(assuming the noise is Gaussian distributed) for stabilization is C > log2(|α|). This leads
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us to the following necessary condition:

Theorem 5.1 A necessary condition for the stabilizability of the system depicted in Fig-

ure 5.2 is

min{C1, C2} > log2(|α|)

where C1 and C2 denote the channel capacities of the uplink and downlink, respectively.

To prove the sufficient condition, we follow a similar approach in Chapter 3 and Chap-

ter 4 and directly deal with the input power at both channels. First, we write the input-

output relation as

E{u2
1} =

k2Φ1 + (λ)2 Φ2

1 − (α + k)2
,

E{u2
2} =

(

1
λ

)2 (

1 − α2 − 2αk
)

k2Φ1 + k2Φ2

1 − (α + k)2
,

(5.2)

where λ , λ1/λ2. Then, the stabilization problem 5.1 is translated to

minimize E{u2
1}

subject to E{u2
2} ≤ Γ2, |α + k| < 1, λ > 0.

(5.3)

The necessary and sufficient condition for stabilizabilty over both channels is summa-

rized in the following theorem:

Theorem 5.2 The system depicted in Figure 5.2 is stabilizable if and only if the inequalities

Γ2

Φ2
>

(

α2 − 1
)

(5.4)

Γ1

Φ1
>

(α2 − 1)( Γ2

Φ2
+ 1)

Γ2

Φ2
− (α2 − 1)

(5.5)

are both satisfied.
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Figure 5.2: State feedback stabilization over two channels for a unstable scalar plant

Proof. See appendix A.6.

Assume that the noise processes are Gaussian distributed. The following corollary,

which reveals the case when one of the channels is extremely reliable, is immediate.

Corollary 5.3 If the capacity of the downlink channel C2 → ∞, then the condition on the

uplink channel becomes C1 > log2(|α|).

Alternatively, the inequality (5.5) can be expressed as

[

Γ1

Φ1
− (α2 − 1)

] [

Γ2

Φ2
− (α2 − 1)

]

> α2(α2 − 1).

It demonstrates by how much the channel SNR should exceed the quantity α2 − 1, the

degree of instability.

Furthermore, after some algebraic manipulation on (5.5) and taking logarithm on both

sides of the inequality, we may obtain yet another form of the conditions in Theorem 5.2,

in terms of channel capacity, as

C1 + C2 −
1

2
log2

(

1 +
Γ1

Φ1
+

Γ2

Φ2

)

> log2 |α|.
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The term

1

2
log2

(

1 +
Γ1

Φ1
+

Γ2

Φ2

)

may be considered as the capacity of a “pseudo AWN channel” with SNR

(Γ1Φ2 + Γ2Φ1) /(Φ1Φ2).

It is a penalty of stabilizing a unstable LTI plant over two AWN channels and restricting

to state feedback control strategy. The capacity of the two channels must overcome the

negative effect of this “pseudo channel” and the degree of the instability of the plant to

ensure the stabilizability of the system.

We plot the tradeoff in Figure 5.3. The region above the convex curve represents the

SNR pairs that can ensure the stabilizability of the system. The region below the curve

represents what is not achievable via state feedback. The origin of the figure is at (2, 2) and

the rectangular region above the axes strictly contains the region for the achievable SNR

pairs. It represents the necessary condition of the stabilization over a single channel

[

Γ1

Φ1
− (α2 − 1)

] [

Γ2

Φ2
− (α2 − 1)

]

> 0.

5.4 Stabilization of continuous-time scalar systems

5.4.1 State feedback

We consider continuous time systems with the setup of Figure 5.1. With state feedback,

the stabilization of scalar continuous-time systems over AWN channels is not manageable.

In fact, as the state signal is corrupted by the white noise n1, the input power at the downlink
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Figure 5.3: Tradeoff between the SNR of the uplink and downlink channels in the case of

α =
√

3.

channel is unbounded and thus any practical channels cannot transmit the control signal

needed.

5.4.2 Output feedback

Although we consider first order scalar systems, we may treat the state information as

plant output and thus utilize more general controllers. The problem is formulated in (5.1),

and with a slight abuse of notation, the transfer functions are given by

u1 =
PK

1 − PK
n1 +

1

λ

P

1 − PK
n2,

u2 = λ
K

1 − PK
n1 +

PK

1 − PK
n2.
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We tackle this optimization problem using the same approaches as the previous two chapters.

As special instances of Section 2.3.3, we introduce the coprime factorization

P = NM−1

in which N, M ∈ RH∞ and satisfy the Bezout identity MX−NY = 1. The parametrization

of all stabilizing controllers is

K = {K : K = −(Y − MQ)(X − NQ)−1, Q ∈ RH∞}.

We can then characterize input power at the two channels as

E{u2
1} = ‖(Y − MQ)N‖2

2 Φ1 +
1

λ2
‖(X − NQ)N‖2

2 Φ2,

E{u2
2} = λ2 ‖(Y − MQ)M‖2

2 Φ1 + ‖(Y − MQ)N‖2
2 Φ2.

where λ , λ2/λ1. The optimization over stabilizing controller is then equivalent to that

over Q ∈ RH∞. It is easy to verify that the problem is convex (see Lemma 3.3) and we

define the Lagrangian functional J as

J(Q, ǫ, λ) , (1 − ǫ)E{u2
1} + ǫ(E{u2

2} − Γ2),

where 0 ≤ ǫ ≤ 1.

As a related problem, we first fix a stabilizing controller K and seek for a tradeoff

relationship between the SNR of the two channels for optimized λ. The scaling factors are

optimal, when they are designed to guarantee the input powers at the channels match the

constraints. Specifically, we obtain

inf
λ>0

J(Q, ǫ, λ) = ‖(Y − MQ)N‖2
2 ((1 − ǫ)Φ1 + ǫΦ2)

+ 2
√

ǫ(1 − ǫ)Φ1Φ2 ‖(X − NQ)N‖2 ‖(Y − MQ)M‖2 − ǫΓ2.
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Define J∗
λ , infλ>0 J(Q, ǫ, λ). By the duality principle Theorem 2.19, it follows that

Γ1 ≥ E{u2
1} = max

ǫ>0

1

1 − ǫ
J∗

λ

With some elementary calculus, we obtain the following theorem:

Theorem 5.4 Consider the system shown in Figure 5.1. For a fixed Q ∈ RH∞ or stabi-

lizing controller K, a necessary and sufficient condition on the SNR of the two channels for

stabilization is

(

Γ1

Φ1
−

∥

∥

∥

∥

PK

1 − PK

∥

∥

∥

∥

2

2

) (

Γ2

Φ2
−

∥

∥

∥

∥

PK

1 − PK

∥

∥

∥

∥

2

2

)

≥
∥

∥

∥

∥

P

1 − PK

∥

∥

∥

∥

2

2

∥

∥

∥

∥

K

1 − PK

∥

∥

∥

∥

2

2

.

or equivalently,

(

Γ1

Φ1
− ‖(Y − MQ)N‖2

2

)(

Γ2

Φ2
− ‖(Y − MQ)N‖2

2

)

≥ ‖(X − NQ)N‖2
2‖(Y − MQ)M‖2

2.

If one of the channels becomes noise-free and very reliable, for example as Γ2/Φ2 → ∞,

then the condition in the theorem boils downs to

Γ1

Φ1
≥ ‖(Y − MQ)N‖2

2.

After optimization on Q ∈ RH∞, the right hand side equals 2
∑

pi (for minimum phase

plants), which agrees with the results obtained for a single channel [8].

To accurately quantify a fundamental bound on Γ1 and Γ2, we need optimization of K

or Q over all proper real-rational functions. Thus, it is notably difficult to arrive at an exact

analytical characterization for a general plant transfer function. However, we can show a

similar result as the discrete-time case if we consider only scalar systems. Suppose that the

plant is described by

ẋ(t) = px(t) + u(t) (5.6)
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where t is the time variable, x(t) ∈ R is the plant state and u(t) is the control input. We

assume that the pole p > 0 and therefore the plant is unstable. The following theorem gives

stabilization conditions for the two channels:

Theorem 5.5 Consider the system configuration in Figure 5.1. The power constraints of

the uplink and downlink channels are Γ1 and Γ2, respectively. Assume that the power spectral

densities of the noise processes n1 and n2 are Φ1 and Φ2, respectively. If the plant is given

by (5.6) with p > 0, then it is stabilizable over the channels if and only if the following

conditions hold:

Γ2

Φ2
> 2p (5.7)

Γ1

Φ1
>

p

2





2
√

Γ2

Φ2
−√

2p
√

Γ2

Φ2
−√

2p





2

. (5.8)

Proof. See Appendix A.7.

In limiting cases, such as when Γ1/Φ1 → ∞ or Γ2/Φ2 → ∞, the theorem boils down

to the single-channel condition: Γ/Φ > 2p. Furthermore, after a simple manipulation, we

can express (5.8) as
(

√

Γ1

Φ1
−

√

2p

) (

√

Γ2

Φ2
−

√

2p

)

> p.

The difference
√

Γ2

Φ2
−√

2p can be considered as the extra amount of channel resources needed

beyond that of one channel stabilization, and thus the product of the channel resource has

to be greater than the quantity representing the degree of instability of the system.

5.4.3 Two-parameter controller

In this subsection we consider the problem of using an extra degree of freedom in

designing another controller parameter to improve the performance of the system or make
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Figure 5.4: Stabilization over two channels with two-parameter controller utilizing feedback

from channel.

its stabilization easier to achieve. In particular, we assume that the exact information

regarding the white noise process n2 is available at the controller. This information pattern,

along with the general two-parameter controller structure, albeit idealized, gives us insight

into the bound on the performance one can ever achieve. The system configuration is shown

in Figure 5.4. There, the controller has a direct access of the channel noise through instant

channel feedback.

Again, we study the problem (5.1). Utilizing the parameterization (2.5), if we let

Q0 = Q + X − RN ∈ RH∞, the input power at the two channels is

E{u2
1} = ‖−1 + M(X − RN)‖2

2 Φ1 +
1

λ2
‖NQ0‖2

2 Φ2,

E{u2
2} = λ2 ‖M(Y − RM)‖2

2 Φ1 + ‖−1 + MQ0‖2
2 Φ2.

As such, it has a separation property between the effect of the uplink and downlink channels.

Theorem 5.6 Consider the system configuration in Figure 5.4. Under the assumptions of

Theorem 5.5, the plant described by (5.6) with p > 0 is stabilizable over the channels if and
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Figure 5.5: The comparison between the tradeoff of the one- and two-parameter controller

for stabilization. The curve below corresponds to the two-parameter case, which has better

performance. We assume p = 2 in this figure.

only if the following conditions hold:

Γ2

Φ2
> 2p (5.9)

Γ1

Φ1
> 2p

Γ2

Φ2

Γ2

Φ2
− 2p

. (5.10)

Proof. See Appendix A.8.

The conditions in the theorem are equivalent to

(

Γ1

Φ1
− 2p

)(

Γ2

Φ2
− 2p

)

> 4p2.

We plot the comparison of the tradeoff curves between the original controller and two-

parameter controller in Figure 5.5. The additional information and the extra parameter of

the controller significantly improve the system performance, and gives a lower bound on

the optimal stabilization region we can achieve over LTI controllers. The region is included
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in the rectangular area SNR1 > 2p and SNR2 > 2p, which is the case if we consider only a

single channel. Both curves in Figure 5.5 will approach asymptotically the single channel

stabilization condition.

5.5 Summary

In this chapter, we analyzed the stabilization of linear feedback systems over both the

uplink and downlink channels. The interaction of the channels with the unstable plant forms

an achievable SNR region for system stabilizability. For first order LTI systems, the lower

bound on the achievable SNR’s exhibits a convex tradeoff that is more demanding than

when there is only one channel. In addition, the use of the two-parameter controller to take

advantage of the extra information from the channel feedback can better the performance

significantly and expand the feasible region of SNR’s.
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Chapter 6

Conclusions

6.1 Overview

The thesis designs and explores a framework for the performance analysis of feedback

control systems with communication constraints. We aim to gain insight into the funda-

mental limitations originated from the mutual impact of the communication and control.

As one of the first endeavors to study performance problems in this realm, our work can

possess important values in the design and synthesis of NCS’s. In the thesis, analytical

bounds are derived, serving as a separation line between what is achievable and what is

not. Given any performance specification, we can readily pinpoint the class of channels

which can satisfactorily achieve it.

In this framework, we choose the AWN channel as the communication model, focus on

LTI control strategies, make use of only scaling for channel compensation, and thus keep

the linearity of the closed-loop system. We characterize primarily the tracking performance

and work in a full MIMO setting and parallel channels for the most part.

101



We have analyzed the control systems with AWN channel in the uplink. The stabi-

lization conditions on the channel input power for a general MIMO systems depend on the

unstable poles and their directions altered by the vector of noise levels of the parallel chan-

nel. If nonminimum phase zeros are present, the proximity of such zeros and unstable poles

incurs stricter requirement on the channel, and that constraint on the channel input power

behaves differently depending on the alignment of zero and pole directions. We derived

the optimal achievable tracking performance. It depends on the unstable poles and non-

minimum phase zeros of the plant, the power spectral density of the reference signal, and

the power constraint and noise levels of the parallel channel. For minimum phase systems,

the tracking performance exhibits a desirable property that only the power of the reference

signal instead of the complete power spectral density is needed. Scaling factors across the

channel are designed to always activate the channel input power constraint at optimal per-

formance. Comparisons show apparent performance improvements and it seems unnatural

to not use scaling. Under optimal tracking scheme, we have found out that the power al-

locations among each channel follow a “fire-quenching” policy rather than the widely-know

“water-filling” solution. The power allocation of parallel channel for a fully decentralized

control systems agrees with a similar policy.

The tracking performance of systems over downlink AWN channel gives rise to more

interesting but harder to analyze results. In this case, the plant gain in entire frequency

range plays an essential role and thus the minimum phase behaviors affect the performance.

Then, certain minimum phase zeros, especially ones that are close to the imaginary axis,

will greatly worsen the performance. For MIMO plants, the performance bound is related

to the largest and smallest singular value of the plant transfer function matrix at the entire
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Figure 6.1: Correction Systems

frequency range.

The stabilization problem for systems over both the uplink and downlink channel

through LTI control strategy is also equivalent to a constrained optimization problem.

For first-order systems, we explicitly show a convex tradeoff between the SNR’s of the two

channels, which determines the feasible region of the SNR pair that ensures stability. If

one channel becomes more reliable (has higher SNR), then the requirement on the other

channel can be relaxed.

6.2 Future Work

We have illustrated in different perspectives the interaction between the communication

and control in terms of performance under a linear control framework. Our work may be

extended in a few directions.

As we have only analyzed scaling scheme for the channel, it is interesting and mean-

ingful to investigate more general channel compensation strategies while staying within
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the same framework. A simplest extension is to consider a multi-dimension scaling that

is capable of adjust each channel’s input power1, instead of the uniform scaling factor we

assumed. A more general extension would be to use LTI filters in RH∞ across the channels.

It is also important to exploit channel feedbacks or encoding/decoding schemes to possibly

better the performance, for example, the correction systems shown in Figure 6.1 proposed

by Shannon. In those cases, exact and analytical bounds may be hard to derive.

As for the stabilization over both uplink and downlink channels, one may consider

plants with time delay, or even more general plant models. The tracking problem may also

be investigated in the two channel configuration. The underlying assumption about the

channels being the same type may also be dropped.

We have only focused on the AWN channel, a continuous-alphabet channel. In contrast,

the performance problem with discrete-alphabet channel, which is more practical for imple-

mentation, may be considered. However, one may need to utilize appropriate information

patterns and device sophisticated coding/deocoding for the channels.

1Similar to the one we studied in Section 3.5.1.3, but with more general assumptions on the plant and
controller.
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Appendix A

Proofs

A.1 Proof of Theorem 3.8

Proof. From (3.14) and the factorization (3.9), we immediately obtain

µn = inf
R∈RH∞

∥

∥

∥Ψn

(

F−1 − I
)

+ Ψn − (X − NR)M̃ (n)
m

∥

∥

∥

2

2

= µm + inf
R∈RH∞

∥

∥

∥Ψn − (X − NR)M̃ (n)
m

∥

∥

∥

2

2
.

Let H3 ,

∥

∥

∥
Ψn − (X − NR)M̃

(n)
m

∥

∥

∥

2

2
. Since N(s) can be factorized as in (2.7), we obtain

that

H3 =
∥

∥

∥
L−1

(

Ψn − XM̃ (n)
m

)

+ NmRM̃ (n)
m

∥

∥

∥

2

2
.

Applying (2.24) in Lemma 2.18, we obtain

L−1
(

Ψn − XM̃ (n)
m

)

= A(s) +
k

∑

i=1





k
∏

j=i+1

Lj(zi)





−1

×

L−1
i (s)





i−1
∏

j=1

Lj(zi)





−1
(

Ψn − X(zi)M̃
(n)
m (zi)

)

(A.1)
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where A(s) ∈ RH∞. To proceed, we simplify the expression such that it depends on M̃

instead of X. And we claim that the following identity is true

L−1
i (s)





i−1
∏

j=1

Lj(zi)





−1
(

Ψn − X(zi)M̃
(n)
m (zi)

)

= Ci + L−1
i (s)





i−1
∏

j=1

Lj(zi)





−1

Ψn

(

I − F−1(zi)
)

(A.2)

where Ci is a constant matrix. Firstly, from the Bezout identity M̃X − ÑY = I, we have

that XM̃Ψn = Ψn+NM−1Y M̃Ψn. Right-multiplying F−1 on both sides and taking s = zi,

we have

Ψn − X(zi)M̃
(n)
m (zi) = Ψn

(

I − F−1(zi)
)

− E(zi) (A.3)

where

E(s) , P (s)Y (s)M̃ (n)
m (s).

From (2.27), we have that

L−1
i (s) − I =

2Re{zi}
s − zi

ηiη
H
i . (A.4)

Also, by definition of the factor (2.9), we have ηH
i Li(zi) = 0. Then it follows from the

factorization (2.7) that,

(

L−1
i (s) − I

)





i−1
∏

j=1

Lj(zi)





−1

E(zi) = 0.

Therefore

Ci = −





i−1
∏

j=1

Lj(zi)





−1

E(zi),

and the claim is proved.
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The next step is to decompose H3 into parts in H2 and H⊥
2 , respectively. More specif-

ically, in light of (A.1) , (A.2) and the fact that L−1
i − I ∈ H⊥

2 for i = 1, . . . , k, we obtain

H3 =

∥

∥

∥

∥

∥
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where A′ ∈ RH∞ and R is selected such that A′ −NmRM̃
(n)
m ∈ H2. It is obvious now that
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2 = 0. Thus we obtain
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A easy calculation shows
〈

1
s−zi

, 1
s−zj

〉

= 1/(z̄i + zj) and the proof is complete.

A.2 Proof of Theorem 3.9

Proof. Lemma 3.5 shows two steps to search for the best tracking performance. We

shall first derive

H∗(ǫ) = inf
Q,R∈RH∞

H(ǫ, Q, R,Γ)

which is defined in (3.6), and then find H∗
e (Γ) according to (3.8).

It follows from (3.3) and the property of the H2 norm that
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For simplicity, define the following functions
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To search for H∗
1 , we follow the techniques explainted in Section 2.3.7. It is straight-

forward to see that
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Introduce an inner matrix
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Note that ∆T ∆ = I. According to Lemma 2.16, we are able to construct a unitary operator

in L2 as
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Pre-multiplying Ξ, we obtain
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





Ψr

∥

∥

∥

∥

∥

∥

∥

∥

2

2

(A.8)

where

Ĥ∗
1 , inf

Q∈RH∞

∥

∥

∥

∥

∥

∥

∥

∥









∆T









√
1 − ǫI

0









+ NQ









Ψr

∥

∥

∥

∥

∥

∥

∥

∥

2

2

.
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As stated in Remark 3.6, the infimum Ĥ∗
1 is 0 by properly choosing Qθ ∈ RH∞ such that

NQθ → (1 − ǫ)I (A.9)

as θ → 0+. An easy calculation of the second term of (A.8) yields

H∗
1 = ǫ(1 − ǫ)‖Ψr‖2

2 = ǫ(1 − ǫ)σ2
r
.

From (3.13), it is now clear that

H∗(ǫ) = ǫ(1 − ǫ)σ2
r

+ µm − ǫΓ. (A.10)

The problem is feasible if and only if H∗(1) < 0, which also implies Γ > µm is the lower

bound on the power constraint for stabilizability of the system. Define α , ǫ/(1 − ǫ).

Applying Lemma 3.5, we obtain

H∗
e (Γ) = sup

α>0

(

α

1 + α
σ2

r
+ (1 + α)µm − αΓ

)

. (A.11)

This function of α is concave. Thus, by setting the derivative to 0, we obtain the optimal

α as

α∗ =























√

σ2
r

Γ−µm
− 1, if µm < Γ < µm+σ2

r
,

0, if Γ ≥ µm+σ2
r
,

(A.12)

which, together with (A.11), proves (3.19).

A.3 Proof of Theorem 3.11

Proof. The proof is similar to and leverages the routines of that for Theorem 3.9. Since

the plant has nonminimum phase zeros, the coprime factor N admits the factorization (2.7).
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Then, as (A.5) indicates, we have

H∗(ǫ) = H∗
1 + µn − ǫΓ,

where

H∗
1 = inf

Q∈RH∞

∥

∥

∥

∥

∥

∥

∥

∥









√
1 − ǫ(L−1 − NmQ)

√
ǫNmQ









Ψr

∥

∥

∥

∥

∥

∥

∥

∥

2

2

and µn is given by (3.16). We decompose L−1Ψr into parts in H2 and H⊥
2 . Using

Lemma 2.18, we obtain that

L−1Ψr = A + A1 + A2,

where A is a matrix in RH∞ and

A1 ,

k
∑

i=1

L−1
k (zi) · · ·L−1

i+1(zi)L
−1
i−1(zi) · · ·L−1

1 (zi)Ψr(zi),

A2 ,

k
∑

i=1

L−1
k (zi) · · ·L−1

i+1(zi)
(

L−1
i − I

)

L−1
i−1(zi) · · ·L−1

1 (zi)Ψr(zi)

=
k

∑

i=1

2Re{zi}
s − zi

aib
H
i .

It follows that A + A1 = Z ∈ RH∞ where Z is as defined in the theorem, and A2 ∈ H⊥
2 .

Since Ψr is minimum phase, we can choose Q such that (A + A1 − NmQΨr) ∈ H2. As a

result,

H1 = (1 − ǫ) ‖A2‖2
2 +

∥

∥

∥

∥

∥

∥

∥

∥









√
1 − ǫZ

0









+









−
√

1 − ǫI

√
ǫI









NmQΨr

∥

∥

∥

∥

∥

∥

∥

∥

2

2

.

It is a straightforward calculation that ‖A2‖2
2 = δ. Then, by pre-multiplying the second

term by the unitary matrix Ξ (A.7), we obtain that

H∗
1 = (1 − ǫ)δ + ǫ(1 − ǫ)‖Z‖2

2.
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The rest of the proof consists of using Lemma 3.5 and carrying out derivations of convex

optimization same as Theorem 3.9. It leads to

H∗
e = sup

α>0

(

δ +
α

1 + α
‖Z‖2

2 + (1 + α)µn − αΓ

)

and the theorem can be proved.

A.4 Proof of Lemma 4.5

We shall first introduce two preliminary lemmas which are necessary for the proof.

The lemmas can be found in, e.g. [15]. Consider the class of functions which have limited

behavior at infinity

F ,

{

f : lim
R→∞

sup
θ∈[−π/2,π/2]

|f(Rejθ)|
R

= 0

}

.

The first result is a format of Bode’s attenuation integral [5], [58, p. 49] and the second

result is an immediate consequence of the first.

Lemma A.1 Suppose that f(s) is analytic at s = ∞ and in the closed right half plane

(C+
⋃

C0) except for possible singularities s0 on C0 that satisfy lims→s0
(s − s0)f(s) = 0.

Also suppose that f(s) is conjugate symmetric. Define f(jω) = h1(ω) + jh2(ω). Then,

lim
s→∞

s [f(s) − f(∞)] =
1

π

∫ ∞

−∞
[h1(ω) − h1(∞)] dω. (A.13)

Applying the above lemma on log f(s) ∈ F yields

Lemma A.2 Let f(s) be conjugate symmetric. Suppose further that f(s) is analytic and

has no zeros in the closed right half plane except for possible zeros on C0. Also suppose that

log f(s) ∈ F . Then, provided that f(∞) 6= 0, we have

lim
s→∞

s log
f(s)

f(∞)
=

1

π

∫ ∞

−∞
log

∣

∣

∣

∣

f(jω)

f(∞)

∣

∣

∣

∣

dω. (A.14)
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Proof of Lemma 4.5. Since the plant is minimum phase, we can define the free

parameter in RH∞ as R0 = X̃ − RÑ . By virtue of the factorization (4.4), we obtain

J2(R0) =

∥

∥

∥

∥

∥

∥

∥

∥

1

λ









√
1 − ǫNR0

λ
√

ǫ
(

B−1 − I + I − MR0

)









Ψn

∥

∥

∥

∥

∥

∥

∥

∥

2

2

Since B−1 − I ∈ H⊥
2 , we have

J∗
2 = ǫ

∥

∥

(

B−1 − I
)

Ψn

∥

∥

2

2
+ J̃2.

where

J̃2 = inf
R0∈RH∞

∥

∥

∥

∥

∥

∥

∥

∥

















0

√
ǫI









+
1

λ
ΘiΘoR0









Ψn

∥

∥

∥

∥

∥

∥

∥

∥

2

2

and








√
1 − ǫN

−λ
√

ǫMm









= ΘiΘo.

By definition of the inner-outer factorization,

Θ∼
o Θo = (1 − ǫ)N∼N + λ2ǫM∼

mMm. (A.15)

And since the P is strictly proper, we have

Θ∼
o (∞)Θo(∞) = λ2ǫM∼

m(∞)Mm(∞). (A.16)

Construct the unitary matrix

Υ ,









Θ∼
i

I − ΘiΘ
∼
i









and use the technique in the proof of Theorem 2.15, we have

J̃2 = inf
R0∈RH∞

∥

∥

∥

∥

∥

∥

∥

∥

Υ

















0

√
ǫI









+
1

λ
ΘiΘoR0









Ψn

∥

∥

∥

∥

∥

∥

∥

∥

2

2

.
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We can then break J̃2 into the following two parts

J̃2 = inf
R0∈RH∞

J2a + J2b,

in which

J2a ,

∥

∥

∥

∥

∥

∥

∥

∥









Θ∼
i









0

√
ǫI









+
1

λ
ΘoR0









Ψn

∥

∥

∥

∥

∥

∥

∥

∥

2

2

and

J2b ,

∥

∥

∥

∥

∥

∥

∥

∥

(I − ΘiΘ
∼
i )









0

√
ǫI









Ψn

∥

∥

∥

∥

∥

∥

∥

∥

2

2

.

To calculate J2a, we note that

Θ∼
i = (Θ∼

o )−1

[

√
1 − ǫN∼ −λ

√
ǫM∼

m

]

.

Then,

J2a =

∥

∥

∥

∥

[

λǫ
(

(Θ∼
o )−1M∼

m − (Θ∼
o )−1(∞)M∼

m(∞)
)

+ λǫ(Θ∼
o )−1(∞)M∼

m(∞) − 1

λ
ΘoR0

]

Ψn

∥

∥

∥

∥

2

2

where (Θ∼
o )−1M∼

m − (Θ∼
o )−1(∞)M∼

m(∞) ∈ H⊥
2 and therefore after properly choosing R0 ∈

RH∞, we have

inf
R0∈RH∞

J2a =
∥

∥λǫ
(

(Θ∼
o )−1M∼

m − (Θ∼
o )−1(∞)M∼

m(∞)
)

Ψn

∥

∥

2

2
.

On the other hand, after some tedious calculation, we have

J2b =

∥

∥

∥

∥

∥

∥

∥

∥









λǫ
√

1 − ǫNΘ−1
o (Θ∼

o )−1M∼
m

√
ǫ
(

I − λ2ǫMmΘ−1
o (Θ∼

o )−1M∼
m

)









Ψn

∥

∥

∥

∥

∥

∥

∥

∥

2

2

.
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Use the definition of H2 norm (2.1) to expand J̃2 explicitly. Then, to simplify J̃2, we make

use of (A.15) to cancel common terms, which yields

J̃2 =
1

2π

∫ ∞

−∞
Trace

{[

ǫ + λ2ǫ2
(

Mm(∞)Θ−1
o (∞)(Θ∼

o )−1(∞)M∼
m(∞)

− Mm(∞)Θ−1
o (∞)Θ−H

o MH
m − MmΘ−1

o (Θ∼
o )−1(∞)M∼

m(∞)
)]

Ψ2
n

}

dω.

But from (A.16), we can further simplify the above and obtain the following

J̃2 = − ǫ

π

∫ ∞

−∞

m
∑

i=1

Φi (Re{gi(jω)} − 1) dω.

Factorize gi(s) as

gi(s) =





Ni
∏

j=1

s − sj

s + s̄j



 gim(s) (A.17)

where sj , 1 ≤ j ≤ Ni are the nonminimum phase zeros of gi(s) and gim(s) is minimum

phase. If we define G(s) = λ2ǫMm(s)Θ−1
o (s)Θ−T

o (∞)MT
m(∞), then by definition G(∞) = I

which implies gi(∞) = gim(∞) = 1 for 1 ≤ i ≤ m. Thus, we may invoke (A.13) and obtain

1

π

∫ ∞

−∞
Φi (Re{gi(jω)} − 1) dω

= lim
s→∞

s[gi(s) − 1]

= − lim
s→∞

s2g′i(s)

= − lim
s→∞

s2
Ni
∑

j=1

(

s − sj

s + s̄j

)′
gim(s) − lim

s→∞
s2g′im(s)

= −2

Ni
∑

j=1

sj + lim
s→∞

s log gim(s).

And due to Lemma A.2, we have

lim
s→∞

s log gim(s) =
1

π

∫ ∞

−∞
log |gim(jω)|dω

=
1

π

∫ ∞

−∞
log |gi(jω)|dω. (A.18)
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Therefore,

J̃2 = 2ǫ

m
∑

i=1

Φi





Ni
∑

j=1

sj −
1

π

∫ ∞

0
log |gi(jω)|dω



 .

To establish the inequality (4.13b), we need

|gi(jω)| ≤ σ̄ [G(jω)]

≤ λ2ǫσ̄
[

Mm(jω)Θ−1
o (jω)

]

σ̄
[

Θ−T
o (∞)MT

m(∞)
]

= λ̄
1

2

(

[

I +
1 − ǫ

λ2ǫ
PH

m Pm

]−1
)

=
1

√

1 + 1−ǫ
λ2ǫ

σ2[P (jω)]
.

The rest of the derivation is then straightforward.

In addition, for SISO systems, G(s) and thus g(s) are scalar minimum phase transfer

functions. Specifically,

g(s) = λ
√

ǫMm(s)Θ−1
o (s).

It follows that

|g(jω)|2 = λ2ǫ

∣

∣

∣

∣

Mm(jω)

Θo(jω)

∣

∣

∣

∣

=

[

1 +
1 − ǫ

λ2ǫ
|P (jω)|2

]−1

.

We can then apply (A.18) and complete the proof.

A.5 Proof of Lemma 4.7

Two preliminary results that are variants of Lemma A.1 and A.2 shall be needed for

the derivations of the lemma. The first result can be found in, e.g. [58, p. 50] and [15].
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Lemma A.3 Suppose that f(s) is conjugate symmetric and analytic at s = ∞ and in the

closed right half plane except for possible singularities s0 on C0 that satisfy lims→s0
(s −

s0)f(s) = 0. Denote f(jω) = h1(ω) + jh2(ω). Then,

f ′(0) =
1

π

∫ ∞

−∞

h1(ω) − h1(0)

ω2
dω. (A.19)

An application of Lemma A.3 on log f(s) implies the following lemma:

Lemma A.4 Consider a conjugate symmetric function f(s). Suppose it is analytic and

has no zeros in the closed right half plane except for possible zeros on C0. Suppose also that

log f(s) ∈ F . Then, provided that f(0) 6= 0,

f ′(0)

f(0)
=

1

π

∫ ∞

−∞

1

ω2
log

∣

∣

∣

∣

f(jω)

f(0)

∣

∣

∣

∣

dω. (A.20)

Proof of Lemma 4.7. The entire proof amounts to the calculation of J∗
1 . We start

with

J1(Q) =

∥

∥

∥

∥

∥

∥

∥

∥

















√
1 − ǫI

0









− ΘiΘoQ









Ψr

∥

∥

∥

∥

∥

∥

∥

∥

2

2

where we applied the inner-outer factorization (4.11). Then, as in the proof of Lemma 4.5,

we make use of the unitary matrix Υ and obtain

J∗
1 = inf

Q∈RH∞

J1a + J1b,

where

J1a ,

∥

∥

∥

∥

∥

∥

∥

∥









Θ∼
i









√
1 − ǫI

0









− ΘoQ









Ψr

∥

∥

∥

∥

∥

∥

∥

∥

2

2

and

J1b ,

∥

∥

∥

∥

∥

∥

∥

∥

(I − ΘiΘ
∼
i )









√
1 − ǫI

0









Ψr

∥

∥

∥

∥

∥

∥

∥

∥

2

2

.
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Following an orthogonal decomposition of J1a in L2, we may then eliminate the H2 part by

properly choosing Q and have

inf
Q∈RH∞

J1a =
∥

∥

∥
(1 − ǫ)

[

(Θ∼
o )−1 N∼ − (Θ∼

o )−1 (0)N∼(0)
]

Ψr

∥

∥

∥

2

2
.

On the other hand, after some involved calculations,

J1b =

∥

∥

∥

∥

∥

∥

∥

∥









√
1 − ǫ

(

I − (1 − ǫ)NΘ−1
o (Θ∼

o )−1N∼)

λ(1 − ǫ)
√

ǫMmΘ−1
o (Θ∼

o )−1N∼









Ψr

∥

∥

∥

∥

∥

∥

∥

∥

2

2

.

Since the plant P has at least a pole at s = 0, the relation (A.15) gives rise to

ΘT (0)Θ(0) = (1 − ǫ)NT (0)N(0). (A.21)

The above equation can be used to simplify J∗
1 . After a long derivation, we obtain

J∗
1 =

1 − ǫ

2π

∫ ∞

−∞
Trace

{[

2I − (1 − ǫ)
(

NΘ−1
o Θ−H(0)NH(0)

+ N(0)Θ−1(0)Θ−H
o NH

)]

Gr(jω)
}

dω.

It is then straightforward to see that

J∗
1 =

1 − ǫ

π

∫ ∞

−∞

n
∑

i=1

σ2
ri

1 − Re{fi(jω)}
ω2

dω

where fi(s) is defined by (4.14). From (A.21) we know that fi(0) = 1 for 1 ≤ i ≤ n. We

may also directly verify that fi(s) ∈ F . Then, applying Lemma A.3 gives rise to

J∗
1 = −(1 − ǫ)

n
∑

i=1

σ2
rif

′
i(0).

We may factorize fi(s) as

fi(s) =





Ni
∏

j=1

s̄j(s − sj)

sj(s + s̄j)



 fim(s) (A.22)
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where sj , 1 ≤ j ≤ Ni are the nonminimum phase zeros of fi(s) and fim(s) is minimum

phase. In light of the factorization above, we have

f ′
i(0) =

d log fi(s)

d s

∣

∣

∣

∣

s=0

= −2

Ni
∑

j=1

1

sj
+ f ′

im(0).

We may apply Lemma A.4 and obtain

f ′
im(0) =

1

π

∫ ∞

−∞

log |fim(jω)|
ω2

dω

=
1

π

∫ ∞

−∞

log |fi(jω)|
ω2

dω.

As a result,

J∗
1 = 2(1 − ǫ)

n
∑

i=1

σ2
ri





Ni
∑

j=1

1

sj
− 1

π

∫ ∞

0

log |fi(jω)|
ω2

dω



 .

However,

|fi(jω)| ≤ (1 − ǫ)σ
(

N(jω)Θ−1
o (jω)Θ−T

o (0)NT (0)
)

≤ (1 − ǫ)σ
(

N(jω)Θ−1
o (jω)

)

σ
(

(Θ−T
o (0)NT (0))

)

=
√

1 − ǫλ̄
1

2

(

Θ−H
o (jω)NH(jω)N(jω)Θ−1

o (jω)
)

where the last equality follows from (A.21). Then, in light of (A.15), we may further simplify

the above as

|fi(jω)| ≤ λ̄
1

2

(

[

I +
λ2ǫ

1 − ǫ

(

Pm(jω)PH
m (jω)

)−1
]−1

)

=
1

√

1 + λ2ǫ
(1−ǫ)σ2(Pm(jω))

which can be used to prove the inequality (4.15b).

For SISO systems, the equality is true since the scalar function

f(s) =
√

1 − ǫN(jω)Θ−1
o (jω)

is minimum phase.
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A.6 Proof of Theorem 5.2

Proof. To solve (5.3), we form the Lagrangian

H(k, λ, ǫ) = (1 − ǫ)E{u2
1} + ǫ(E{u2

2} − Γ2) (A.23)

with 0 ≤ ǫ ≤ 1. Plugging (5.2) in H, we obtain

H(k, λ, ǫ) =

[

(1 − ǫ) + ǫ
λ

(

1 − α2 − 2αk
)]

k2Φ1

1 − (α + k)2
+

(1 − ǫ)λΦ2 + ǫk2Φ2

1 − (α + k)2
− ǫΓ2.

It is straightforward to see that for fixed k and ǫ, the optimal λ that minimizes H satisfies

λ∗ =

√

ǫ (1 − α2 − 2αk) k2Φ1
√

Φ2(1 − ǫ)
.

It follows that

H(k, λ∗, ǫ) =
2
√

ǫ(1 − ǫ) (1 − α2 − 2αk) k2Φ1Φ2

1 − (α + k)2
+

k2 ((1 − ǫ)Φ1 + ǫΦ2)

1 − (α + k)2
− ǫΓ2.

The next step is to find the optimal controller k. To this end, we calculate the partial

derivative of H(k, λ∗, ǫ) with respect to k as

∂ H(k, λ∗, ǫ)

∂ k
=

2k(1 − α2 − αk)

(1 − (α + k)2)2
f(k) , g(k) (A.24)

where

f(k) , −ǫ

(

1 −
√

Φ2(1 − ǫ)
(

1 − α2 − 2αk + k2
)

√
Φ1ǫ

√

(1 − α2 − 2αk) k2

)

Φ1 + Φ1 + ǫΦ2.

It is easy to verify that, for ∀ k that satisfies (α + k)2 < 1, we have f(k) > 0. Then,

k∗ = 1/α − α is the only solution of g(k) = 0 that stabilizes the system. Moreover, after

some tedious calculation, we can show that

∂2 H(k, λ∗, ǫ)

∂ k2

∣

∣

∣

k=1/α−α
> 0,
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which then implies that k∗ is indeed the optimal state feedback gain. The last step is to

find the optimal Lagrange multiplier.

Define the multiplier θ = ǫ/(1 − ǫ), and

ϕ(θ) =
H(k∗, λ∗, ǫ)

1 − ǫ

= (α2 − 1)Φ1 + (α2 − 1)Φ2θ + 2α
√

(α2 − 1)Φ1Φ2θ − θΓ2.

Because of the convexity, and from Theorem 2.19, the optimization problem (5.3) can be

solved by maxϕ(θ). Taking the derivative on ϕ(θ), we have

dϕ(θ)

dθ
= (α2 − 1)Φ2 − Γ2 +

α
√

(α2 − 1)Φ1Φ2√
θ

.

It is a monotonically decreasing function and it implies that a necessary condition on Γ2

for stabilizability is

Γ2 >
(

α2 − 1
)

Φ2 (A.25)

since otherwise max ϕ(θ) → ∞. Under this condition, the optimal θ is

θ∗ =
α2(α2 − 1)Φ1Φ2

(Γ2 − (α2 − 1)Φ2)
2 ,

and thus the lower bound for stabilizability on the input power of uplink channel is

E{u2
1}∗ =

(α2 − 1)Φ1(Γ2 + Φ2)

Γ2 − (α2 − 1)Φ2
,

and the proof is complete.

A.7 Proof of Theorem 5.5

Proof. We shall need the factorization (cf. Section 2.3.5)

M(s) = B(s)Mm(s),
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where Mm(s) is minimum phase, and B(s) is all-pass.

Define

J∗(ǫ, λ) , inf
Q∈RH∞

J(Q, ǫ, λ).

Introduce two inner-outer factorizations (cf. Section 2.3.6)








√
ǫMm

√
1−ǫ
λ N









= ΘiΘo

and








λ
√

Φ2Mm

√
Φ1N









= ∆i∆o. (A.26)

The optimization of J over Q can be separated into two parts: define

H1 ,

(

ǫλ2 ‖(Y − MQ)M‖2
2 + (1 − ǫ) ‖(Y − MQ)N‖2

2

)

Φ1,

H2 ,

(

ǫ ‖(Y − MQ)N‖2
2 +

(1 − ǫ)

λ2
‖(X − NQ)N‖2

2

)

Φ2.

In the following derivations, we need the partial fraction expansions

B−1Y N = −(B−1 − 1) − 1 + MmX

and

B−1Y Mm = −(B−1 − 1)
Mm(p)

N(p)
− Mm(p)

N(p)
+ Rm

in which −Mm(p)/N(p) + Rm ∈ RH∞. We can then transform H1 to

H1

Φ1
=

(

ǫλ2

(

Mm(p)

N(p)

)2

+ 1 − ǫ

)

∥

∥B−1 − 1
∥

∥

2

2
+

∥

∥

∥

∥

∥

∥

∥

∥

A1 +









√
ǫλMm

√
1 − ǫN









QN

∥

∥

∥

∥

∥

∥

∥

∥

2

2

where

A1 =









√
ǫλ

(

Mm(p)
N(p) − Rm

)

√
1 − ǫ (1 − MmX)









.
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With aid of the inner-outer factorization1, the second term can be expressed as

‖(I − ΘiΘ
∼
i ) A1‖2

2 + ‖Θ∼
i A1 + λΘoQMm‖2

2 .

Following a similar procedure, we have

H2

Φ2
= ǫ

∥

∥B−1 − 1
∥

∥

2

2
+ ‖(I − ΘiΘ

∼
i ) A2‖2

2 + ‖Θ∼
i A2 + ΘoQN‖2

2

where

A2 =









√
ǫ (1 − MmX)

−
√

1−ǫ
λ NX









.

To proceed, we decompose Θ∼
i A1 and Θ∼

i A2 into parts in H2 and H⊥
2 , respectively.

Then we add the remaining two parts involving Q, make use of the factorization (A.26) and

follow Section 2.3.7. In the end, we obtain the following expression2 for J∗

J∗(ǫ, λ) = J1 + J2 + J3 (A.27)

where

J1 = ǫ

(

∥

∥B−1 − 1
∥

∥

2

2
+

1

π

∫ ∞

−∞

(

1 −
√

ǫRe

(

Mm(jω)

Θo(jω)

))

dω

)

Φ2,

J2 =

[ (

ǫλ2

(

Mm(p)

N(p)

)2

+ 1 − ǫ

)

∥

∥B−1 − 1
∥

∥

2

2

+ λ2

∥

∥

∥

∥

∥

(

(Θ∼
o )−1

(

ǫM∼
m

Mm(p)

N(p)
+

1 − ǫ

λ2
N∼

)

− Θo(p)

N(p)

)

(

B−1 − 1
)

∥

∥

∥

∥

∥

2

2

+ ǫ(1 − ǫ)

∥

∥

∥

∥

Θ−1
o

(

Mm − N
Mm(p)

N(p)

)

(

B−1 − 1
)

∥

∥

∥

∥

2

2

]

Φ1,

1See Section 2.3.7
2the details of this lengthy derivation are omitted.
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and

J3 = λ2Φ1Φ2

∥

∥

∥

∥

∥

∆−1
o

(

Mm

(

ΘoM
−1 −

√
ǫ
)

− N
(

B−1 − 1
) Θo(p)

N(p)

)∥

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

∥

(∆∼
o )−1

(

λ2Φ1M
∼
m

Θo(p)

N(p)

(

B−1 − 1
)

+Φ2N
∼ (

ΘoM
−1 −

√
ǫ
)

)

−
(

B−1 − 1
) ∆o(p)Θo(p)

Mm(p)N(p)

∥

∥

∥

∥

∥

2

2

.

The fundamental bound on the channel input power over any LTI controllers is given by

Γ1 > inf
λ,Q∈RH∞

E{u2
1} = inf

λ>0
sup
ǫ>0

1

1 − ǫ
J∗(ǫ, λ),

where the equality holds according to Theorem 2.19.

As the system equation is (5.6), the transfer function is given by P (s) = 1/(s−p). The

coprime factorization of the plant yields

N =
1

s + 1
, M =

s − p

s + 1
, B =

s − p

s + p
, Mm =

s + p

s + 1
.

The inner outer factorizations are given by

Θo =
√

ǫ
s +

√

p2 + 1−ǫ
λ2ǫ

s + 1
,

and

∆o = λ
√

Φ1

s +
√

p2 + Φ2

λ2Φ1

s + 1
.

After a cumbersome calculations, we have

Jθ(θ, λ) ,
1

1 − ǫ
J∗(ǫ, λ)

=

(

p +

√

p2 +
Φ2

λ2Φ1

)

Φ1

+ θ

(

p +

√

p2 +
1

θλ2

) (

Φ2 + 2pλ2

(

p +

√

p2 +
Φ2

λ2Φ1

)

Φ1

)

− θΓ2

where θ , ǫ
1−ǫ .
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Setting the derivative of Jθ with respect to θ to 0, we obtain the optimal Lagrangian

multiplier as

θ∗ =
1

2p2λ2

(

l
√

l2 − p2
− 1

)

where

l =
Γ2

Φ2 + 2pλ2
(

p +
√

p2 + Φ2

λ2Phi1

)

Φ1

− p.

Further simplifications yield the optimum as

J∗
θ (λ) =

1

2pλ2



Γ2 − pΦ2 −

√

√

√

√Γ2

(

Γ2 − 2p

(

Φ2 + 2pλ2

(

p +

√

p2 +
Φ2

λ2Φ1

)

Φ1

))



 .

The final step is to search for the optimal scaling factor λ. In fact, using the same elementary

calculus argument, we have

inf
λ>0

J∗
θ (λ) =

p

2





2
√

Γ2

Φ2
−√

2p
√

Γ2

Φ2
−√

2p





2

when the scaling factor is

λ∗ =

√
2Φ2Γ2

4p2

(

1√
p −

√

2Φ2

Γ2

)2

1√
p −

√

Φ2

2Γ2

and the proof is complete.

A.8 Proof of Theorem 5.6

Proof. The proof is similar to Appendix A.7. As (A.27), the Lagrangian optimized

over all stabilizing two-parameter controllers Q0 and R yields

J∗(ǫ, λ) = J1 + J2.
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Thus, the cross term J3 is eliminated by the use of the additional controller parameter. We

can then obtain

J∗(ǫ, λ) = ǫ

(

p +

√

p2 +
1 − ǫ

ǫλ2

)

Φ2+2p

(

1 + ǫ

(

−1 + 2p

(

p +

√

p2 +
1 − ǫ

ǫλ2

)

λ2

))

Φ1−ǫΓ2.

The optimal Lagrange multiplier θ is

θ∗ =
1

2p2λ2

(

r
√

r2 − p2
− 1

)

where

r =
Γ2

Φ2 + 4p2λ2Φ1
− p.

Therefore, we have

J∗
θ (λ) = Γ2 − pΦ2 +

√

Γ2 (Γ2 − 2pΦ2 − 8p3λ2Φ1).

The optimization over the scaling factor λ gives rise to (5.10) when

λ∗ =
Γ1Φ2 − 2pΦ2

2

4Γ2p2Φ1
.

130




