Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

The effect of salt and pH on block liposomes studied by cryogenic transmission electron microscopy

Abstract

Recently, we have reported the discovery of block liposomes (BLs), a new class of liquid (chain-melted) vesicles, formed in mixtures of the curvature-stabilizing hexadecavalent cationic lipid MVLBG2, the neutral lipid 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC), and water with no added salt. BLs consist of connected spheres, pears, tubes, or rods. Unlike in typical liposome systems, where spherical vesicles, tubular vesicles, and cylindrical micelles are separated on the macroscopic scale, shapes remain connected and are separated only on the nanometer scale within a single BL. Here, we report structural studies of the effect of salt and pH on the BL phase, carried out using differential interference contrast microscopy (DIC) and cryogenic transmission electron microscopy (cryo-TEM). Addition of salt screens the electrostatic interactions; in low-salt conditions, partial screening of electrostatic interactions leads to a shape transition from BLs to bilamellar vesicles, while in the high-salt regime, a shape transition from BLs to liposomes with spherical morphologies occurs. This demonstrates that strong electrostatic interactions are essential for BL formation. Understanding the control of liposome shape evolution is of high interest because such shape changes play an important role in many intracellular processes such as endocytosis, endoplasmatic reticulum-associated vesiculation, vesicle recycling and signaling.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View