Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Segmenting hypothalamic subunits in human newborn magnetic resonance imaging data.

Published Web Location

https://doi.org/10.1002/hbm.26582
Abstract

Preclinical evidence suggests that inter-individual variation in the structure of the hypothalamus at birth is associated with variation in the intrauterine environment, with downstream implications for future disease susceptibility. However, scientific advancement in humans is limited by a lack of validated methods for the automatic segmentation of the newborn hypothalamus. N = 215 healthy full-term infants with paired T1-/T2-weighted MR images across four sites were considered for primary analyses (mean postmenstrual age = 44.3 ± 3.5 weeks, nmale /nfemale  = 110/106). The outputs of FreeSurfers hypothalamic subunit segmentation tools designed for adults (segFS) were compared against those of a novel registration-based pipeline developed here (segATLAS) and against manually edited segmentations (segMAN) as reference. Comparisons were made using Dice Similarity Coefficients (DSCs) and through expected associations with postmenstrual age at scan. In addition, we aimed to demonstrate the validity of the segATLAS pipeline by testing for the stability of inter-individual variation in hypothalamic volume across the first year of life (n = 41 longitudinal datasets available). SegFS and segATLAS segmentations demonstrated a wide spread in agreement (mean DSC = 0.65 ± 0.14 SD; range = {0.03-0.80}). SegATLAS volumes were more highly correlated with postmenstrual age at scan than segFS volumes (n = 215 infants; RsegATLAS 2  = 65% vs. RsegFS 2  = 40%), and segATLAS volumes demonstrated a higher degree of agreement with segMAN reference segmentations at the whole hypothalamus (segATLAS DSC = 0.89 ± 0.06 SD; segFS DSC = 0.68 ± 0.14 SD) and subunit levels (segATLAS DSC = 0.80 ± 0.16 SD; segFS DSC = 0.40 ± 0.26 SD). In addition, segATLAS (but not segFS) volumes demonstrated stability from near birth to ~1 years age (n = 41; R2  = 25%; p < 10-3 ). These findings highlight segATLAS as a valid and publicly available (https://github.com/jerodras/neonate_hypothalamus_seg) pipeline for the segmentation of hypothalamic subunits using human newborn MRI up to 3 months of age collected at resolutions on the order of 1 mm isotropic. Because the hypothalamus is traditionally understudied due to a lack of high-quality segmentation tools during the early life period, and because the hypothalamus is of high biological relevance to human growth and development, this tool may stimulate developmental and clinical research by providing new insight into the unique role of the hypothalamus and its subunits in shaping trajectories of early life health and disease.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View