Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Real-time 3T MRI-guided cardiovascular catheterization in a porcine model using a glass-fiber epoxy-based guidewire.

  • Author(s): Li, Xinzhou
  • Perotti, Luigi E
  • Martinez, Jessica A
  • Duarte-Vogel, Sandra M
  • Ennis, Daniel B
  • Wu, Holden H
  • et al.
Abstract

PURPOSE:Real-time magnetic resonance imaging (MRI) is a promising alternative to X-ray fluoroscopy for guiding cardiovascular catheterization procedures. Major challenges, however, include the lack of guidewires that are compatible with the MRI environment, not susceptible to radiofrequency-induced heating, and reliably visualized. Preclinical evaluation of new guidewire designs has been conducted at 1.5T. Here we further evaluate the safety (device heating), device visualization, and procedural feasibility of 3T MRI-guided cardiovascular catheterization using a novel MRI-visible glass-fiber epoxy-based guidewire in phantoms and porcine models. METHODS:To evaluate device safety, guidewire tip heating (GTH) was measured in phantom experiments with different combinations of catheters and guidewires. In vivo cardiovascular catheterization procedures were performed in both healthy (N = 5) and infarcted (N = 5) porcine models under real-time 3T MRI guidance using a glass-fiber epoxy-based guidewire. The times for each procedural step were recorded separately. Guidewire visualization was assessed by measuring the dimensions of the guidewire-induced signal void and contrast-to-noise ratio (CNR) between the guidewire tip signal void and the blood signal in real-time gradient-echo MRI (specific absorption rate [SAR] = 0.04 W/kg). RESULTS:In the phantom experiments, GTH did not exceed 0.35°C when using the real-time gradient-echo sequence (SAR = 0.04 W/kg), demonstrating the safety of the glass-fiber epoxy-based guidewire at 3T. The catheter was successfully placed in the left ventricle (LV) under real-time MRI for all five healthy subjects and three out of five infarcted subjects. Signal void dimensions and CNR values showed consistent visualization of the glass-fiber epoxy-based guidewire in real-time MRI. The average time (minutes:seconds) for the catheterization procedure in all subjects was 4:32, although the procedure time varied depending on the subject's specific anatomy (standard deviation = 4:41). CONCLUSIONS:Real-time 3T MRI-guided cardiovascular catheterization using a new MRI-visible glass-fiber epoxy-based guidewire is feasible in terms of visualization and guidewire navigation, and safe in terms of radiofrequency-induced guidewire tip heating.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View