Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Bright Infrared‐to‐Ultraviolet/Visible Upconversion in Small Alkaline Earth‐Based Nanoparticles with Biocompatible CaF2 Shells

Abstract

Upconverting nanoparticles (UCNPs) are promising candidates for photon-driven reactions, including light-triggered drug delivery, photodynamic therapy, and photocatalysis. Herein, we investigate the NIR-to-UV/visible emission of sub-15 nm alkaline-earth rare-earth fluoride UCNPs (M1-x Lnx F2+x, MLnF) with a CaF2 shell. We synthesize 8 alkaline-earth host materials doped with Yb3+ and Tm3+ , with alkaline-earth (M) spanning Ca, Sr, and Ba, MgSr, CaSr, CaBa, SrBa, and CaSrBa. We explore UCNP composition, size, and lanthanide doping-dependent emission, focusing on upconversion quantum yield (UCQY) and UV emission. UCQY values of 2.46 % at 250 W cm-2 are achieved with 14.5 nm SrLuF@CaF2 particles, with 7.3 % of total emission in the UV. In 10.9 nm SrYbF:1 %Tm3+ @CaF2 particles, UV emission increased to 9.9 % with UCQY at 1.14 %. We demonstrate dye degradation under NIR illumination using SrYbF:1 %Tm3+ @CaF2 , highlighting the efficiency of these UCNPs and their ability to trigger photoprocesses.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View