- Main
Characterizing non-hydrolyzing Neisseria meningitidis serogroup A UDP-N-acetylglucosamine (UDP-GlcNAc) 2-epimerase using UDP-N-acetylmannosamine (UDP-ManNAc) and derivatives.
Published Web Location
https://doi.org/10.1016/j.carres.2015.10.016Abstract
Neisseria meningitidis serogroup A non-hydrolyzing uridine 5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc) 2-epimerase (NmSacA) catalyzes the interconversion between UDP-GlcNAc and uridine 5'-diphosphate-N-acetylmannosamine (UDP-ManNAc). It is a key enzyme involved in the biosynthesis of the capsular polysaccharide [-6ManNAcα1-phosphate-]n of N. meningitidis serogroup A, one of the six serogroups (A, B, C, W-135, X, and Y) that account for most cases of N. meningitidis-caused bacterial septicemia and meningitis. N. meningitidis serogroup A is responsible for large epidemics in the developing world, especially in Africa. Here we report that UDP-ManNAc could be used as a substrate for C-terminal His6-tagged recombinant NmSacA (NmSacA-His6) in the absence of UDP-GlcNAc. NmSacA-His6 was activated by UDP-GlcNAc and inhibited by 2-acetamidoglucal and UDP. Substrate specificity study showed that NmSacA-His6 could tolerate several chemoenzymatically synthesized UDP-ManNAc derivatives as substrates although its activity was much lower than non-modified UDP-ManNAc. Homology modeling and molecular docking revealed likely structural determinants of NmSacA substrate specificity. This is the first detailed study of N. meningitidis serogroup A UDP-GlcNAc 2-epimerase.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-