Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Astrocytic Ephrin-B1 Regulates Oligodendrocyte Development and Myelination

Abstract

Astrocytes have been implicated in oligodendrocyte development and myelination, however, the mechanisms by which astrocytes regulate oligodendrocytes remain unclear. Our findings suggest a new mechanism that regulates astrocyte-mediated oligodendrocyte development through ephrin-B1 signaling in astrocytes. Using a mouse model, we examined the role of astrocytic ephrin-B1 signaling in oligodendrocyte development by deleting ephrin-B1 specifically in astrocytes during the postnatal days (P)14-P28 period and used mRNA analysis, immunohistochemistry, and mouse behaviors to study its effects on oligodendrocytes and myelination. We found that deletion of astrocytic ephrin-B1 downregulated many genes associated with oligodendrocyte development, myelination, and lipid metabolism in the hippocampus and the corpus callosum. Additionally, we observed a reduced number of oligodendrocytes and impaired myelination in the corpus callosum of astrocyte-specific ephrin-B1 KO mice. Finally, our data show reduced motor strength in these mice exhibiting clasping phenotype and impaired performance in the rotarod test most likely due to impaired myelination. Our studies provide new evidence that astrocytic ephrin-B1 positively regulates oligodendrocyte development and myelination, potentially through astrocyte-oligodendrocyte interactions.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View