Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Molecular editing of aza-arene C-H bonds by distance, geometry and chirality.

Abstract

Direct molecular editing of heteroarene carbon-hydrogen (C-H) bonds through consecutive selective C-H functionalization has the potential to grant rapid access into diverse chemical spaces, which is a valuable but often challenging venture to achieve in medicinal chemistry1. In contrast to electronically biased heterocyclic C-H bonds2-9, remote benzocyclic C-H bonds on bicyclic aza-arenes are especially difficult to differentiate because of the lack of intrinsic steric/electronic biases10-12. Here we report two conceptually distinct directing templates that enable the modular differentiation and functionalization of adjacent remote (C6 versus C7) and positionally similar (C3 versus C7) positions on bicyclic aza-arenes through careful modulation of distance, geometry and previously unconsidered chirality in template design. This strategy enables direct C-H olefination, alkynylation and allylation at adjacent C6 and C7 positions of quinolines in the presence of a competing C3 position that is spatially similar to C7. Notably, such site-selective, iterative and late-stage C-H editing of quinoline-containing pharmacophores can be performed in a modular fashion in different orders to suit bespoke synthetic applications. This Article, in combination with previously reported complementary methods, now fully establishes a unified late-stage molecular editing strategy to directly modify bicyclic aza-arenes at any given site in different orders.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View