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Abstract of the Dissertation

Event Predictions for Remote Health

Monitoring

by

Mars Lan

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2013

Professor Majid Sarrafzadeh, Chair

Recent advances in electronic miniaturization, sensor technology, and wireless

communications have opened the possibility of ubiquitous, small, and low-power

sensor nodes that gather, process, and transmit various data over a long period of

time. One of the key applications for these new technologies is in the area of remote

health monitoring. Having the ability to continuously monitor numerous bodily

measurements, as opposed to the occasional on-the-spot examination performed

at a doctor visit, can potentially revolutionize the health care system. For the first

time, physicians can make more informed decisions based the continuous history

of a patient’s wellness, rather than relying on the incomplete snapshots from the

traditional medical records.

More importantly, using advanced data mining and machine learning tech-

niques, it is possible to discover a wealth of patterns, knowledge, and relation-

ships based on the data collected from a large population of different background,

ethnicity, age group, and medical history. This thesis focuses specifically on event

predictions for remote health monitoring. These events can be either acute clin-

ical episodes, such as falling and epileptic seizure, or chronic conditions, such as

congestive heart failure and diabetes. Based on the different requirements, this

thesis tackles four key issues of event predictions for remote health monitoring:
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(a) Subsequence-based prediction, (b) Sequential pattern mining, (c) Precursor

pattern discovery, and (d) Predictions using discrete data. For each issue, one or

multiple application areas have been identified, and the proposed algorithms have

been validated using data gathered from real patients.
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CHAPTER 1

Subsequence-Based Predictions

In this chapter, we present an event prediction algorithm based on subsequence

matching. The algorithm, SmartFall, is designed particularly for fall detection and

cause identification; however, it can be potentially applied to many other appli-

cations with minimal modifications. The system employs subsequence matching

techniques, which differ fundamentally from most existing fall detection systems

based on multi-stage thresholding. The use of subsequent matching both reduces

false positives and provides a unique and powerful fall prediction approach. The

system achieves a near 100% sensitivity and specificity when detecting fall and

distinguishing falls from normal daily activities. Using the real data collected from

our sensing platform, SmartFall is able to achieve a cause identification accuracy

of up to 79% using four classes and an improved accuracy of up to 93% using

two classes. The accuracy remains relatively constant with a larger sample size

involving fall patterns from different subjects.

1.1 Background

Fall-related injury is one of the most serious threats to the well-being of elderly

population in recent years [83]. Falls often cause lesions, soft and connective tissue

damages, bone fractures, and head injuries that lead to immediate or eventual

death [46,50]. Statistics show that about one-third of Americans aged over 65 fall

at least once every year [89], and for those living in nursing homes, the likeliness

of falling is almost three times as high [77]. Furthermore, 41% of the patients
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treated for falls at an emergency room were not able to get up within the first 5

minutes, with 3% ended up lying on the ground for up to 3 hours or more [49].

This highlghts the importance of reliable detection and immediate notification of

care givers in the event of falls.

Apart from the health and safety concerns, falls can also incur a significant

cost in health care expenditure. On average, a person’s first fall can cost up to

$20,000 [73]. It is also estimated that fractures sustained from falls cost some 10

billion dollars a year for the elderly population in US [88].

Major causes of falling include gait or balance disorder and lower-extremity

weakness [76]. As a result, physicians often prescribe walking sticks or canes to

assist the elderly people to overcome these problems [15]. In fact, these assistive

devices are so prevalent that there are currently more than 4 million cane users in

the US alone. The evident popularity and relative low cost of the cane make it an

ideal candidate for wireless health care system. To this end, we have previously

developed the SmartCane platform [92], which consists of a traditional-looking

cane embedded with several sensors. The cane relays sensor information via a

wireless interface to external devices for further processing and analysis. The

platform has been subsequently extended to provide actively guided training for

proper cane usage [8]. In this paper, we have developed the SmartFall algorithm

on this platform and have demonstrated its automatic fall detection and cause

identification capability.

SmartFall differs from many other fall detection systems in that it uses sub-

sequence matching of the overall signal envelope instead of predefined thresholds.

This helps our system to achieve high sensitivity and specificity even for fall-like

activities such as resting the cane horizontally. The same principle can be applied

to determine the exact causes of falls.

The remainder of this paper is organized as follows. Section 1.2 presents a

review of related studies in automatic fall detection and cause identification as well
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as the subsequence matching algorithm employed in SmartFall. This is followed

by a detailed description on the hardware, software, and algorithmic components

of SmartFall in Section 1.3. In Section IV 1.4, a case study is presented as a way

to evaluate the effectiveness of SmartFall both in terms of its fall detection rate

and cause identification accuracy. Finally, in Section 1.5 we conclude the paper

and outline possible improvement and future extension to SmartFall.

1.2 Related Work

1.2.1 Automatic Fall Detection & Cause Identification

Many systems have been developed over the years to automatically detect fall

using various sensors. These systems can be generally categorized into wearable

devices, ambience devices, and computer vision [66]. In this paper, we limit the

scope of discussions to werable devices.

Most worn systems detect falls based on thresholding, which involves continu-

ous comparisons of the raw or transformed sensor data, such as position, orienta-

tion, velocity, and force, against pre-defined thresholds. Earlier systems, such as

those found in [62, 91], often employ simple single-stage thresholding. The more

advanced systems use multi-stage thresholding, which requires a set of thresholds

to be exceeded in a particular order over a certain time period for the alarm to

be triggered. It has been thoroughly demonstrated that multi-stage thresholding

outperforms its single-stage counterparts in terms of low false-positive rates [29].

One example of multi-stage thresholding fall detection system is shown in [24],

where a tri-axial accelerometer is embedded into a wrist watch. The falling of the

watch-bearer is detected using a three-stage acceleration-impact-inactivity thresh-

olding on the norm of the accelerations. A similar system is presented in [40],

where a sensor box is fastened to the chest of the testing subject. Apart from

the 3D accelerometer, a tilt sensor and gyroscope have also been incorporated
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into the sensor box to improve accuracy. There are numerous other wearable fall

detection systems that are based on the same principle but attached to different

parts of the body, such as trunk [16], head [59], and waist [21, 95]. Some systems

even require sensors attached to multiple parts of the body [63, 81]. Moreover,

as smartphones become more popular among elderlies, several studies have also

implemented fall detection algorithms on these mobile devices with varying degree

of success [10,23,90].

While most thresholding-based fall detection algorithms claim to have near

perfect detection rate in a controlled environment, they often fail to achieve suffi-

ciently low false positive rates for real life usage [67]. One of the possible reasons

can be demonstrated using Fig. 1.1. The two solid lines, Fall and Swing, in

the graph are X-axis accelerometer signal acquired using the SmartCane during a

forward fall and a back-and-forth swinging motion respectively. The two dotted

lines, TH1 and TH2, denote the two thresholds for stage 1 and 2 respectively.

A typical fall signal consists of a sudden acceleration during the free fall period,

which triggers TH1, followed shortly by a sudden deceleration during the impact

stage, which is detected by TH2. As can be seen in the graph, in spite of the

obvious difference in shape, both signals would be classified as valid falls using

multi-stage thresholding. Such a problem can be mitigated when using the sub-

sequence matching algorithm proposed in this paper.

Despite the large amount of research devoted to automatic fall detection, there

has been very little work done in analyzing the root cause of the fall. In fact, to

our best knowledge, SmartFall is the first system to automatically deduce the

possible cause that has led to the fall.
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1.2.2 Subsequence Matching

Subsequence matching is a technique commonly employed in data mining and time

series analysis to find exact or closely matched segments of a given subsequence

(a query) in a much longer sequence (a candidate) [5]. A query of length k

is defined as Q = Q1, Q2, ..., Qk whereas a candidate of length n is defined as

C = C1, C2, ..., Cn.

The matching process involves sliding Q along C in the direction of the time

axis and computing a distance metric that is proportional to the dissimilarity

between Q and the corresponding segment of C at time t. A commonly used

distance metric is Euclidean Distance [47], which is defined as the square of the

difference square-rooted,

D(Q,C) =

√√√√ k∑
i=1

(Qi − Ci+1)2

Note that both the query and the corresponding candidate segment must be

normalized to have a mean of zero and a standard deviation of one before com-

puting Euclidean Distance to produce meaningful results [48].

Euclidean Distance is really a special case of another popular metric known

as Dynamic Time Warping (DTW) [14]. DTW maps a point in the query to

its closest neighbor in the candidate segment to minimize the effect of phase

shifting, data misalignment, and speed difference. DTW has been applied to

speech recognition [42], bioinformatics [1], and fingerprint verification [51] with

much success. Using some clever tricks, the amortized complexity of DTW can

be reduced from O(n2) to essentially O(n) [72]. DTW is defined as

DTW (Q,C)t =
k∑

i=1

min


√√√√ i+p∑

j=i−p

(Qi − Ct+j)2


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where p is known as the constrain that limits the amount of time warping a

point can undergo. In our experiments, we try to compare the performance of

Euclidean and DTW metrics as well as the effect of varying p.

In the field of data mining and time series analysis, there are often many query

and candidate sequences of extremely long length to match, which can easily lead

to an explosion in computation time. Techniques such as [17, 57, 93] have been

proposed to reduce the data dimensionality. However, in the SmartFall system we

have only a limited number of candidate sensor signals. Furthermore, the query

sequence of interest, i.e. the actual falling motion and the episodes immediately

before the fall, is relatively short in duration. As a result, we have decided to keep

the full data precision without applying any dimensionality reduction.

1.3 Methodology

1.3.1 The SmartCane System

Fig. 1.2 shows the hardware of the SmartCane system. The system consists of 1)

a set of low-cost sensors that output signals related to motion, force, and pressure,

2) an acquisition unit that samples the sensor signal and communicates to external

devices via a wireless link, and 3) a personal device that collects and processes

the data sent from the acquisition unit.

The onboard sensors of the SmartCane system include a tri-axial accelerom-

eter, three signal-axis gyroscopes, and two pressure sensors. The gyroscopes are

placed perpendicularly to each other to measure angular rate in 3D, whereas the

accelerometers are mounted near the handle of the cane with a 30◦ slant from the

direction of gravity. The two pressure sensors are fixed at the handle and the tip

of the cane, measuring the grip and downward force respectively.

The acquisition unit comprises a MicroLEAP [7] processor and a Bluetooth

7
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Figure 1.2: The normal acceleration n based on the model.

interface board. Each sensor input channel can be sampled at a rate of up to

300Hz. We have chosen a sampling rate of 26Hz for SmartFall, so that it is high

enough to capture the normal human motions while prolonging battery life.

The personal device can be any mobile device that supports Bluetooth. Al-

though we have chosen a tablet PC for ease of programming and data visualization,

the algorithm can be easily ported to smartphones. The incoming data is received

and saved to a file by a data logging daemon. The SmartFall software then reads

directly from the file and performs the detection algorithm in a near real-time

fashion.

1.3.2 Fall Modeling

A correct fall model is essential for an effective fall detection and cause identifi-

cation algorithm. A typical fall for a cane user consists of a three-stage process:

1) collapse, 2) impact, and 3) inactivity. During the collapse stage, the user loses

balance and falls towards the ground in an accelerated motion. It is assumed that

the cane should experience a similar free-fall process even if the user is not ap-

8



plying force to the cane. We model this free-fall motion as depicted in Fig. 1.3a.

In this side view, the cane starts from a near upright orientation, topples under

the force of gravity, and, just before hitting the ground, changes to a horizontal

orientation. The acceleration perpendicular to the cane, denoted by the vector n

in the figure, is the norm of the X- and Y-acceleration of the cane (see the top

view in depicted in Fig. 1.3b)). Thus, n can be calculated as n = g cos θ , where

g is the gravitational acceleration, and θ is the angle between the cane and the

ground (0◦ ≤ θ ≤ 90◦). Given the initial height of the accelerometers h, θ can be

expressed as a function of time t

θ = arcsin
(

1− g

2h
t2
)

Since the accelerometers onboard the SmartCane are tilted by an angle α, the

actual norm n′ observed is therefore

n′ = g cos
(

arcsin
(

1− g

2h
t2
))

cos(α)

which can be simplified to

n′ = g

√
3

2

√
1−

(
1− g

2h
t2
)2

for α = 30◦.

The impact stage begins when the cane first makes contact with the ground

and finishes when the cane becomes motionless. The impact exerts a counter force

on the cane that results in a quick deceleration in the opposite direction of the

gravity. Depending on the reaction force, the cane may bounce a few times until

the energy completely dissipates. An exact mathematical model for this stage is

extremely difficult to derive as the motion depends on many factors, such as the

hardness of the ground, material of the cane, shape of the impacting surface, just

9
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Figure 1.3: The (a) side view and (b) top view of the typical falling motion of a

cane

to name a few. Consequently, we model the impact stage in an empirical way by

collecting and averaging several experiment data.

Assuming the impact has caused a serious injury, both the user and the cane

should lie still on the ground for a prolonged period. If the ground surface is flat,

n′ = g · cos(30◦) for the inactivity stage. This is obviously the easiest stage to

model, and the duration of the stage is the only concern. We choose a period of

1 second, which is comparable to that of the impact stage. This is to ensure that

the inactivity stage does not become the dominating factor in the subsequence

matching process. Fig. 1.4 shows the resulting signal for n based on the model

presented here, with the aforementioned three stages highlighted in the figure.

The signal is sampled at 26Hz to match the real sensor signal.
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1.3.3 Automatic Fall Detection and Logging Algorithms

The flow of the SmartFall fall detection algorithm is depicted in Fig. 1.5. The

raw input signals, namely the X- and Y-acceleration from the sensor are first

calibrated before the norm is computed. This is then fed through by a signal

conditioning module, followed by normalization. The normalized signal is con-

tinuously matched against a generated query signal. Based on the calculated

distance, the decision module raises the fall alarm if the signals are sufficiently

similar.

1.3.3.1 Calibration & Norm Computation

The X- and Y-accelerometer data, shown in Fig. 1.6a, have a constant offset

that needs to be calibrated in this module. The offset values are obtained from

the accelerometers reading when the SmartCane is in a steady up-right orienta-

tion. After the offsets are factored in, the normal acceleration, n (Fig. 1.6b), is

calculated using the calibrated X- and Y-accelerations, ax and ay as

n′ =
√

(ax)2 + (ay)2

1.3.3.2 Signal Conditioning

The calibrated normal acceleration is then passed through a 6th order biquad IIR

low-pass filter with 5Hz cut-off to remove noise and high frequency components.

From the filtered signal in Fig. 1.6c, it is clear that the impacting stage, being

highly unpredictable and difficult to model as described earlier, has been effec-

tively smoothened into a single peak. The peak follows closely to the envelope of

the original transient signal. The filtering process has been shown experimentally

to have slightly decreased the distance of genuine matches and greatly increased

the distance of non-matches, which essentially improves the overall signal-to-noise

12



ratio.

1.3.3.3 Normalization

To facilitate the subsequence matching process, the normalization module buffers

the filtered signals and computes a normalized segment of the same length as the

query pattern. This module basically performs the sliding action described in

Section 1.2.2.

The standard normalization process involves mean shifting, i.e. subtracting

the mean from all values, and autoscaling, i.e. dividing all values by the standard

deviation. However, mean shifting is not necessary in this case because the input

signal has already been calibrated for the particular SmartCane in the first module.

In fact, mean shifting may even have an adverse effect on the end result, since

the mean of the short segment buffered by the normalization module is not a true

representative of the mean for the overall input signal. Consequently, we decide to

only perform autoscaling with a mean value of zero for the normalization process.

1.3.3.4 Query Generation

The query is generated statistically based on the model presented in Section 1.3.2.

To facilitate a meaningful comparison with the candidate, the query needs to go

through the same filtering and normalization process.

1.3.3.5 Subsequence Matching & Decision

The subsequence matching module continuously outputs the Euclidean Distance

between the incoming signal and the matching query. An example of the distance

computed from this module is plotted in Fig. 1.6d. Typically the distance dips

quickly towards zero when a matching incoming signal and the query start to

overlap, reaches a local minimum when the two perfectly lined up, and climbs up
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Figure 1.5: The flow of the SmartFall detection algorithm

again as the two signals slide pass each other. The resulting trough is often fairly

consistent and salient as can be seen from Fig. 1.6d.

The decision module is in charge of raising the fall alarm when distance value

computed from the subsequence matching module falls below a certain level. The

cut-off level is represented by the light-gray line in Fig. 1.6d

1.3.4 Cause Identification System

To identify the cause of a fall, we assume that there exists, or lacks, distinct

events before and after a fall. These events could potentially be responsible for

the fall or consequences of the fall. For example, if a person falls after tripping

over an obstacle, the SmartCane is likely to experience more violent movements

during the process. On the other hand, if a person falls due to sudden dizziness,

the SmartCane is likely to move in a more controlled fashion. Fig 1.7 gives an

example where such difference can be observed.

As a result, when a fall is detected using the algorithm described in 1.3.3,
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SmartFall logs and stores 2 seconds of accelerometer signals both before and after

the fall. The likely cause of the fall is then determined by comparing the data

against an existing database of known patterns.

1.4 Case Study

1.4.1 Experiment Setup

We have selected 10 healthy test subjects, 5 males and 5 females, to perform the

experiments. Their ages ranged from 22 to 28, height ranged from 155 to 178cm,

and weighed 48 to 72kg. While these subjects probably have low risk of falling

due to their age and fitness, conducting similar experiments on elderly people

can be potentially hazardous. Furthermore, the subjects were so immersed in the
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experiments that they often ended up actually falling in an uncontrolled fashion.

A falling platform has been set up for the experiment. The platform is made

up of a soft cushion for the subject to fall on, and a hard surface for the cane

to hit, simulating what often happens in real life. The sensor data are transmit-

ted via Bluetooth and recorded on a tablet PC. The recoding is not interrupted

throughout the process even when the subject completes the instructed action

and returns to the starting position.

1.4.2 Fall Detection Cases

Four types of falls have been experimented to gauge the fall detection rate of

SmartFall and are listed in Table 1.1. Each type of fall is performed 30 times,

and the subjects are allowed to use their hands to brace against the ground when

falling. The subjects can also choose to have a firm grip of the cane throughout

the falling process or let go the cane at any time. The results include a fair mix

of various situations.

Furthermore, it is critical to discriminate fall from ordinary daily activities.

Frequent false alarms can seriously undermine the users willingness to adopt the

system. The discrimination power of SmartFall is evaluated using 5 different

activities, as listed in Table 1.2, made up of commonly performed actions with a

cane. Each activity is performed for 30 complete cycles by the test subjects.

1.4.3 Cause Identification Cases

The cause of falls can be categorized into intrinsic and extrinsic [91]. Intrinsic

cause of falls includes dizziness, loss of balance, blackouts, and medical episodes.

On the other hand, trips, slips, and other environmentally triggered factors are

common extrinsic causes.

In our experiments, each subject is asked to simulate falling scenarios that are
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Table 1.1: Types of Falls

Activity Description

Forward Simulates a faced down fall due to

trip over

Backward Simulates fall on the back or bottom

due to a slip

Side Simulates a sideward fall due to loss

of balance

Free

Fall

Simulates an unobstructed topple of

the cane due to loss of grip

Table 1.2: Types of Daily Activities

Activity Description

Slow

Walk

Walking with the cane at a pace ¡ 1

step/second

Fast

Walk

Walking with the cane at a pace 2

steps/second

Sit &

Stand

Standing up with the help of the

cane from a sitting position

Swing Swinging the cane back-and-forth at

around 1Hz with a angle less than

45circ from the vertical axis

Lay on

Lap

Picking up the vertically oriented

cane and laying it flat on the lap

while seated
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Table 1.3: Fall Scenarios

Activity Description

Trip Simulate a person getting tripped

over by an obstacle. This often re-

sults in forward or sideway tumbles.

Slip Simulate a person slipping on

his/her feet and falls backward or

sideway.

Dizziness Simulate a person collapsing due to

dizziness or blackout. The dizziness

is induced deliberately by spinning

the subject around.

Loss of

Balance

Simulate a person falling due to loss

of balance or sudden weakness in

their lower extremity.

caused by four different reasons, two extrinsic (Trip and Slip) and two intrinsic

(Dizziness and Loss of Balance). Each scenario is repeated 10 times, giving a

total of 40 falls per subject. Although subjects are given some general descriptions

for each scenario as listed in Table 1.3, they are not required to follow specific

instructions to fall. Although this freedom produces results that are closer to real

life than in a controlled environment, it also presents significant challenges to the

identification algorithm.
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Table 1.4: Fall Detection Rate For Different Types Of Falls

Subject Forward Backward Side Free Fall

1 100% 100% 100% 100%

2 100% 100% 96.7% 100%

3 100% 93.3% 100% 100%

4 100% 100% 100% 96.7%

5 100% 100% 93.3% 100%

6 100% 96.7% 100% 100%

7 100% 100% 100% 100%

8 96.7% 93.3% 100% 100%

9 100% 100% 96.7% 100%

10 99.7% 98.3% 98.7% 99.7%

Average 100% 100% 100% 100%

1.5 Results and Discussions

1.5.1 Fall Detection

The fall detection rate and discrimination power of the SmartFall system have

been evaluated. The results are shown in Table 1.4 and 1.5 respectively.

The results indicate that SmartFall achieved a near 100% detection rate for

all four types of fall performed by the three subjects. The difference in weight

and height between subjects appears to have little effect on the end results. As

for the false-positive, SmartFall is able to discern daily activities from a genuine

fall with a near 0% false alarm in most cases. Even for Lay on Lap, the most

similar activity to fall, SmartFall is able to attain a low average false positive rate

of 2.3%.
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Table 1.5: False Positive Rate For Daily Activities

Subject Slow Walk Fast Walk Sit & Stand Swing Lay on Lap

1 0% 0% 0% 0% 10%

2 0% 0% 0% 0% 3.3%

3 0% 0% 0% 0% 0%

4 3.3% 0% 0% 0% 0%

5 0% 0% 0% 0% 3.3%

6 0% 0% 0% 0% 0%

7 0% 0% 0% 0% 0%

8 0% 0% 3.3% 0% 0%

9 0% 0% 0% 0% 0%

10 3.3% 0% 0% 0% 6.6%

Average 0.7% 0% 0.3% 0% 2.3%

1.5.2 Cause Identification

The accuracy of the cause identification algorithm is evaluated using the 3-nearest-

neighbor classification and leave-one-out cross-validation. In other words, the class

of a pattern is determined by its three closest matches in the remaining patterns

in the original sample. After applying the process to all patterns in the sample,

the classification accuracy is then computed based on the percentage of correctly

classified patterns.

There are several distance metrics that can be used when finding the closest

match in the sample. As mentioned previously, we focus on two widely accepted

metrics, Euclidean Distance and DTW. We are also interested in how the amount

of constrains applied in DTW may affect the classification accuracy. Therefore,

each validation is computed three times using 1) Euclidean Distance, 2) DTW

with 2% constrain, and 3) DTW with 10% constrain.
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As the number of classes increases, the classification accuracy often decreases

significantly, especially if the classes are similar. In our case, if we consider the

four experiment scenarios as independent classes, many Dizziness cases may be

wrongly classified as Loss of Balance and vice versa due to their similarity in

nature. It therefore makes sense to convert the classification into a two-class

problem—an Extrinsic class made up of Tip and Slip versus an Intrinsic class

made up of Dizziness and Loss of Balance. However, for completeness, we present

the results for both four- and two-class versions of the classification.

1.5.2.1 Individual Results

The sample is first restricted to the fall patterns generated by individual test

subject. This means each fall pattern is compared against the other 39 fall patterns

from the same test subject. The average accuracy is calculated by aggregating the

validation of all 10 subjects and is plotted in Fig. 1.8a and 1.8b for the four-class

and two-class versions respectively.

When classifying into four classes, the accuracy ranges from 62% to 79%,

depending on the particular class and metric used. While this may not seem highly

accurate, it is already markedly better than a 25% random guess. The major

source of classification error is between similar movements, such as Trip/Slip and

Dizziness/Loss of Balance. By grouping these movements together, the accuracy

increases to 83-93% as shown in Fig. 1.8b.

Based on the results it is clear that DTW produces slightly higher accuracy

(less than 10%) than Euclidean Distance for the intrinsic type of falls. On the other

hand, Euclidean Distance appears to be a more accurate metric for extrinsic type

of falls. This is probably due to the fact that extrinsic type of fall often happens

unexpectedly and results in a more volatile signal. However, when comparing to a

less volatile signal generated from intrinsic type of falls using DTW, the volatility
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is essentially ignored as the optimally matched point is selected from the warping

window.

Our results reaffirm the finding in [72], where the author claimed that the

conventional wisdom of 10% constrain for DTW is actually too wide for many

real life applications. In our case, a 2% constrain produces the optimal accuracy

for intrinsic type of falls and the accuracy degrades gradually with increasing

constrain size.

1.5.2.2 Group Results

The sample is increased to cover fall patterns from all subjects. In this case, each

fall pattern is matched against 390 patterns generated by other subjects. It is

initially assumed that the accuracy is expected to drop with the larger sample

and the difference between individual test subjects. However, to our pleasant

surprise, the average accuracy remains more or less unchanged for both four- and

two-class classification (see Fig. 1.8c and 1.8d). This suggests that there is strong

correlation among fall patterns from different individuals.

The similar problem of DTW underperforming Euclidean Distance for extrinsic

type of falls observed for individualized results also occurs here, and the same

explanation can be given as well. Albeit, the effect appears to be less pronounced

with a larger sample size. Once again, DTW with 2% constrain works well with

intrinsic type of falls while larger constrain reduces the accuracy.

1.6 Summary

In this chapter, we present SmartFall, the first automatic fall detection and cause

identification system based on subsequence matching. SmartFall uses data from

the accelerometers embedded closely to the handle of the SmartCane to make

inferences of current status. The detection algorithm differs fundamentally from
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most existing thresholding-based fall detection solutions in that the overall shape

of the sensor signal is considered. When the shape matches the signature of a

typical fall pattern, the alarm is raised and the signal immediately before and

after the fall is recorded for further cause analysis.

Several experiments simulating various types of fall and other common daily

activities have been conducted to evaluate the fall detection performance of Smart-

Fall. The results have indicated that SmartFall is able to detect nearly all cases

of falling in the experiment while achieving extremely low false-positive rates for

most non-falling activities.

Similar experiments, which encompass four scenarios, trip, slip, dizziness, and

loss of balance, have also been conducted to measure the accuracy of Smart-

Fall’s cause identification algorithm. A classification accuracy of 62-79% has been

achieved when four scenarios are considered as independent classes and the sample

is restricted to individual test subjects. The accuracy is improved to 83-93% when

scenarios are grouped into intrinsic and extrinsic classes. We have also shown that

DTW is more accurate than Euclidean Distance for intrinsic type of falls but less

suited for extrinsic ones. Furthermore, applying a 2% constrain to DTW, instead

of the commonly used 10% constrain, gives a noticeable improvement in accuracy

for this particular application. Experimental results also suggest that the fall pat-

terns generated by different test subjects are strongly correlated. This allows us to

reliability classification the cause of a persons fall based on existing fall patterns

generated from other subjects.

As a future extension, it may be desirable to detect the cases where the patients

are not actually falling, but feel like falling or simply not feeling well. These

symptoms may introduce enough of changes to the normal cane usage pattern

such that the motion can be picked up as abnormality. When these abnormalities

are detected, the caregivers can be alerted so immediate actions can be taken.

24



0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Euclidean Distance DTW (2% constrain) DTW (10% constrain) 

Av
er

ag
e 

A
cc

ur
ac

y 

Trip Slip Dizziness Loss of Balance 

(a)

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Euclidean Distance DTW (2% constrain) DTW (10% constrain) 

Ti
tle

 

Extrinsic Intrinsic 

(b)

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Euclidean Distance DTW (2% constrain) DTW (10% constrain) 

Ti
tle

 

Trip Slip Dizziness Loss of Balance 

(c)

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Euclidean Distance DTW (2% constrain) DTW (10% constrain) 

Ti
tle

 

Extrinsic Intrinsic 

(d)

Figure 1.8: Average cause identification accuracy for (a) individual results using

four classes (b) individual results using two classes (c) group results using four

classes (d) group results using two classes.
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CHAPTER 2

Sequential Patterns Mining

Remote health monitoring often produces long sequence of data. Events can

often be predicted by discovering rules that separate one class of sequences from

another. Contrasting patterns, such as Minimal Distinguishing Subsequence, have

been shown to be a succinct way to differentiate datasets and often outperform

other types of statistical classifiers. In this chapter, we introduce a new algorithm

called Fast MDS Minter that efficiently mines MDS from large datasets. FMM

employs a support counting mechanism that is scalable and memory efficient.

It also explores the search space in a breadth-first fashion, resulting in a more

powerful pruning strategy and a simpler on-the-fly minimization process.

Experimental results based on four large, publicly available datasets have

clearly indicated that FMM outperforms the state of the art MDS mining al-

gorithm, ConSGapMiner, in terms of both speed and memory usage. Overall,

FMM is about 1.9 to 7.7 times faster than ConSGapMiner under a variety of set-

tings. This is largely owing to the FMM’s fast support counting mechanism that

scales exceptionally well with gap size and the number of sequences, as well as

the max-suffix based pruning strategy that removes up to 82% of the unpromis-

ing candidates generated by ConSGapMiner. Results also confirm that the peak

memory usage of FMM is insensitive to the number of sequences in the dataset,

enabling it to mine much larger datasets.

26



2.1 Background

Sequence serves as a fundamental abstraction for more complicated problems in

many scientific fields. For example, protein and DNA are often represented as long

string [33], whereas retail transactions and network activity logs are frequently

reduced into sequence of items or events [3, 82]. There are also many sequence

representation developed for high dimensional data, such as time series and video

[58,69].

Once the data have been converted into sets of sequences, a typical machine

learning and data mining task is to infer rules that separate one class of sequences

from another. As these rules can be discovered by means of contrasting, many

data mining algorithms have been developed based on this principle (see [68]

for a comprehensive review). It has also been shown that classifiers built on

these contrasting patterns often achieve higher accuracy and are less susceptible

to overfitting than other statistical methods, such as C4.5 and CBA [27]. In

this paper, we are particularly interested in mining the Minimal Distinguishing

Subsequence (MDS) patterns, which are essentially patterns that occur frequently

in one group of sequences (known as positive examples), but occur rarely in another

(known as negative examples).

The problem of MDS mining is first introduced by Ji et. al. in [45]. This type

of problem is proven to be NP-complete [38] and can thus only be realistically

solved using heuristics. Ji et. al. propose an algorithm called ConSGapMiner that

consists of three stages: a) candidate generation, b) support and gap calculation,

and c) minimization. The algorithm can handle user-specified maximum gap

size when verifying the subsequence-supersequence relationship. They have also

demonstrated the performance of ConSGapMiner using protein datasets and text

from the Bible books.

Allowing gaps in MDS mining is a desirable feature for analyzing purchase
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history, website logs, and biosequences [18]. However, doing so makes the problem

much more challenging at the same time. It has been pointed out by Zaki that

the maximum gap constrain is not class-preserving [97]. This means that the

support of k-item sequence cannot be directly inferred from (k−1)-item sequences.

Consequently, the well known Apriori property is no longer applicable in this

case [3], ruling out a large number of existing algorithms.

ConSGapMiner appears to be the only promising algorithm that mines MDS

efficiently to date. Indeed, to our best knowledge there has been no major improve-

ment or better alternative proposed since 2005. Nevertheless, ConSGapMiner is

still limited to relatively small datasets in practice due to its poor scalability.

Firstly, the bitset-based subsequence testing procedure employed by ConSGap-

Miner requires space that grows linearly with the size of the dataset. At the

same time, performance of subsequence testing degrades dramatically at larger

gap sizes. Secondly, ConSGapMiner prunes the candidate search space in a sub-

optimal way, causing it to execute a large number of costly but unnecessary sup-

port countings. Finally, the minimization process of ConSGapMiner relies on a

special prefix-tree data structure, which uses additional memory and introduces

extraneous complexity to the algorithm.

2.2 Related Work

Since the introduction of sequential pattern mining in [4], many algorithms have

been developed to efficiently mine frequent sequential patterns (see [37] for a detail

review). While MDS mining can be seen as a special application of sequential

pattern mining, the problem is significantly challenging as the Apriori property is

no longer valid when mining MDS.

Similar to MDS mining, emerging patterns [28] and contrast-sets [13] minings

try to identify salient differences between two or multiple datasets. It has been
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shown that such difference can often be used to construct highly accurate clas-

sification models [54]. However, the fundamental difference between itemset and

sequence prevents the various techniques developed for emerging patterns and

contrast set, e.g. [11,55,99], to be applied to MDS mining.

Chan et. al broaden the definition of emerging patterns and introduce the

emerging substrings mining problem in [18], along with a suffix tree-based mining

framework and three pruning strategies. Since substring is just a special case of

subsequence, FMM can be easily tailored to mine emerging strings by setting the

maximum gap size to zero. However, Chan’s suffix tree-based algorithm cannot

be easily modified to mine subsequences.

Zaıane et. al. introduce the concept of Emerging Sequence (ES) , which can

also be used to contrast groups of sequences [96]. They propose an algorithm

to discover top-n ES based on heuristics. Different from emerging patterns and

distinguishing sequence, ES uses distance comparison instead of frequency count

as the contrasting basis. Strictly speaking, even if a subsequence occurs rarely in

the positive group, as long as it is sufficiently different from its nearest neighbor in

the negative group, it is considered to be an ES. The definition has been adopted

by [56] and applied to time series and multimedia data.

In a series of papers, Takeda et. al. present several algorithms to find the

best subsequence [38], episode [78], Variable Length Don’t Care (VLDC) [41],

and Fixed/Variable Length Don’t Care (FVLDC) [87] patterns that separate two

given set of strings. Although these problems are closely related to MDS mining,

finding a single best pattern up to a certain length is arguably an easier problem

than finding all patterns that satisfies some fitness measurement without any lim-

itation on length. Furthermore, the proposed algorithms search for subsequence

in the most general sense—effectively allow a gap of any size. This makes them

unsuitable for mining MDS with specific gap constrain.
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2.3 Preliminaries

Let I be a finite set of distinct items. I is called the alphabet, and its cardinality

is denoted as |I|. A sequence S over I is an ordered list of items, s1, s2, ..., sn,

where si ∈ I for 1 ≤ i ≤ n. The length of S is denoted as |S|, and the i-th element

of S, namely si, is denoted as S[i]. Although it is possible to have S[i] containing

multiple items, we consider only the case where S[i] consists of exactly one item.

A dataset, d, is a collection of one or more sequences of arbitrary length.

Duplicated sequences are allowed to coexist in the same dataset. |d| is the size of

the dataset, which is the number of sequences in d.

A sequence T is a subsequence of S, written as T ⊆ S, if there exists a

series 1 ≤ i1 < i2 < ... < im ≤ n such that T = S[i1], S[i2], ..., S[im]. S is called

a supersequence of T in this case. The maximum gap size for T is defined as

max(ij+1 − ij) ∀1 ≤ j < m, j ∈ R and the minimum gap size is defined as

min(ij+1 − ij) ∀1 ≤ j < m, j ∈ R. If both the maximum and minimum gap sizes

are zero, T is said to be a substring of S.

Definition 1 A gap constrain {gmin, gmax} is a limit such that T is a subsequence

of S only if the minimum gap size ≥ gmin and maximum gap size ≤ gmax.

For example, with a gap constrain {1, 2}, sequence AB is a subsequence of

ACB but is not a subsequence of ACDEB.

Definition 2 The support of a sequence S in dataset d, denoted as suppd, is the

ratio of the number of sequences in d that are supersequences of S to |d|.

In other words, a support of 1 means that S is a subsequence of every se-

quences in d, whereas a support of 0 means that none of the sequences in d is

a supersequence of S. Note that the notion of subsequence can be subjected to

certain gap constrains {gmin, gmax}.
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Definition 3 Given two threshold values, δ and α, two datasets q and r, and a

gap constrain {gmin, gmax}, a sequence S is called a distinguishing subsequence, or

Semi-Minimal Distinguishing Subsequence (SMDS) based on the definition in [44],

if S has suppq ≥ δ and suppr ≤ α.

Definition 4 S is a Minimal Distinguishing Subsequence (MDS) if S is a SMDS,

and there exists no other SMDS T such that T ⊆ S.

With these preliminaries, the problem of MDS mining can therefore be defined

as follows.

Definition 5 Given two datasets, pos (positive examples) and neg (negative ex-

amples), and some user-specified parameters δ, α, gmin, and gmax, find the complete

set of MDS that satisfies these constrains.

In addition, we introduce several terms to facilitate the discussion in the re-

minder of the paper.

Definition 6 The max-prefix of a sequence S of length n is S[1], S[2], ..., S[n−1],

whereas the max-suffix of S is S[2], S[2], ..., S[n].

Definition 7 Sequence T is called the younger twin of S if T = S[1], S[2], ..., S[n−1], x, S[n],

where x ∈ I. S is called the elder twin of T in this case.

2.3.1 Example

We use a simple example to demonstrate the various aspects of MDS mining.

Given the alphabet {A,B,C} and two sets of sequences

pos : (ABAC,BAAC,BCA,BC,ABC)

neg : (AB,ABB)
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and the parameters are set to δ = 0.8, α = 0, gmin = 0, gmax = 1, a sequence is

distinguishing if it is a subsequence of at least 4 sequences from pos and at most

zero sequence from neg. Based on inspection, both C and BC have a supppos of

1.0 and suppneg of 0 and are therefore distinguishing. In other words, C and BC

are SMDS. However, only C is considered a MDS as BC is simply a supersequence

of C. Note that C is a max-suffix of BC.

If gmax were to be increased to 2, BC is no longer a subsequence of BAAC,

which decreases its supppos to 0.8. By the same token, if gmin were set to 1, none

of the sequences in pos, except BAAC, is a supersequence of BC any more. This

means that BC is no longer distinguishing. C is nonetheless unaffected in either

case.

From the pos set, ABAC is a younger twin of ABC as the two are identical

if the former has its second to last item (A) removed. Conversely, ABC is called

an elder twin of ABAC. From the neg set, AB is a max-prefix of ABB because

the latter is simply an one-item extension of the former.

2.4 Fast MDS Miner

Our MDS mining algorithm is made up of three components: support counting,

candidate generation, and minimization. While the names are similar to those

used in ConSGapMiner, each component differs substantially and is designed to be

faster and more memory efficient. The following sections describe each component

in details.

2.4.1 Support Counting

Support is counted twice, one for pos and one for neg, for each candidate sequence

generated. This can easily become the most time-consuming part of the mining

process as the number of sequences in pos and neg increases. In fact, even with
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a relatively small number of sequences, support counting quickly takes up the

majority of the time as shown in Figure 2.1. As a result, it is paramount to

optimize support counting to the fullest extent in order to make the mining process

scalable. This essentially comes down to speeding up the subsequence testing

procedure.

A näıve subsequence testing procedure loops through the target sequence one

item at a time and see if a supersequence of the test sequence can be formed

starting from the current item until the end of the sequence. Such an algorithm

exhibits a worst case complexity of O(n2), where n is the length of the target

sequence. Let m be the length of the target sequence, adding the gap constrain

{gmin, gmax} can reduce the complexity to O((m+ gmax)×n) assuming (m− 1)×

gmax � n.

A bitset-based approach is proposed in [45] in order to decrease the time spent

in subsequence testing by maintaining multiple bitset structure for each target

sequence. It relies on the fact that most computers can handle boolean operations,

such as logical OR and bit-shifting, between long string of bits efficiently. One

of the apparent downsides of such an approach is the amount of space required

to store these bitsets, which is O(l × |I| × L × N) in the worst case, where l is

length of the longest test sequence; I is the alphabet; L is the average length

of target sequence; and N is the combined number of sequences in pos and neg.

Moreover, with every new candidate generated, each bitset needs to be shifted

right gmax + 1 times before OR-ing with the intermediate bitset. This operation

becomes prohibitively expensive with large gmax and therefore limits the scalability

of the algorithm.

Another possible approach for fast subsequence testing is to make use of a

pre-constructed automaton, or the so-called Direct Acyclic Subsequence Graph

(DASG) in [9], for each target sequences. This allows a O(m log |I|) subsequence

query time, where m is the length of the test sequence and I is the alphabet,
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at the expense of O(n2) space complexity. However, since the gap constrain is

not class-preserving, DASG needs to be modified to support multiple start states.

This will essentially increases the query time to O(mn log |l|).

In order to balance the performance and space usage, we introduce a new sub-

sequence testing procedure called FastTest. The implementation for FastTest

is detailed in Algorithm 1. Similar to the näıve algorithm, there is no need

to pre-compute space-consuming data structure for each targte sequence. How-

ever, FastTest performs multiple subsequence testings simultaneously as it iterates

through each item in the target sequence (line 9-17). This results in a worst cast

time complexity of O(nk) where n is the length of the target sequence, and k is

the maximum number of prefixes being compared (|C| in Algorithm 1). Note

that k is bounded by min(m, gmax), where m is the length of the test sequence.

Since gmax is relatively small in most cases, the time complexity is approximately

O(n). Finally, based on the FastTest procedure, the support counting component

becomes a simple loop as shown in Algorithm 2.

2.4.2 Candidate Generation & Pruning

Different from ConSGapMiner, FMM generates candidate sequences in a breadth-

first search (BFS) fashion. In other words, we start from a single-item sequence

in lexicographical order, for example {A}, {B}, {C}, etc. Each sequence is then

appended with one item chosen from the alphabet in lexicographical order until

all two-item sequences have been exhausted. The process then repeats for all

three-item sequences, four-item sequences, and so on and so forth. This forms

a tree-shaped search space similar to the one shown in Figure 2.2. However,

the combinatorial nature quickly makes the testing of every possible sequences

intractable even with a relatively short length. Consequently, we need to introduce

some effective pruning strategies to limit the growth of the search space.
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Algorithm 1 FastTest: Test if s is a subsequence of u under the gap constrain

{gmin, gmax}
Input s, u, gmax, gmin

Outpu true if s is a subsequence of u, false otherwise

1: if |s| > |u| then

2: return false

3: C = φ // A set of tuple (p, g) where p is the current comparison position

and g is the current gap size

4: for i = 1 to |u| step 1 do

5: if u[i] = s[1] then

6: // New starting position with zero gap size

7: C = C ∪ (0, 0)

8: T = φ // Temporary set holding qualified tuples

9: for all (p, g) ∈ C do

10: if u[i] = s[p] then

11: // Move to next position on match

12: g = 0, p = p+ 1

13: if p = |s| then

14: return true

15: else

16: // Increase gap size on mismatch

17: g = g + 1

18: if g < gmin or g > gmax then

19: // Drop unqualified tuple

20: continue

21: T = T ∪ (p, g)

22: C = T

23: return false
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Figure 2.1: Percentage of time spent on each part of the MDS mining process for

different numbers of sequences from pfam2 dataset.

Algorithm 2 CountSupport: Compute the ratio of strings in U that support s

under the gap constrain {gmin, gmax}
Input s, U, gmax, gmin

Outpu support for s

1: c = 0

2: for all u ∈ U do

3: if FastTest(s, u) then

4: c = c+ 1

5: return c/|U |
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Two pruning strategies, Non-Minimal Distinguishing Pruning and Max-Prefix

Infrequency Pruning have been proposed in [45]. The former is based on the

observation that if a sequence is distinguishing, any of its supersequences formed

by appending items cannot be minimal. This can also be applied to the younger

twins of any distinguishing subsequences to further reduce the search space. Max-

Prefix Infrequency Pruning takes advantage that when the supppos of a candidate

is less than δ, not only is the sequence itself infrequent, but any direct children of

the sequence are also infrequent by definition. As a result no further exploration

stemming from the sequence is necessary. It is clear that when both pruning

strategies are applied, the only thing remaining in the search space at any given

moment are candidates that have supppos ≥ δ and suppneg ≥ α. We call these

sequences Potential Prefixes (PP).

FMM also incorporates both pruning strategies. However, thanks to the BFS

style of candidate generation, we are able to expand the Non-Minimal Distin-

guishing Pruning strategy to make it even more powerful. This results in the

algorithm listed in Algorithm 3. When a new candidate c, where |c| > 1, is gen-

erated, its max-suffix m, or any direct parents of m, must have been previously

visited. Therefore, if m is not a PP, m or any direct parents of m must be either

distinguishing or infrequent, which is a sufficient criterion to preclude c from the

MDS set. In Section 2.5.2, we will demonstrate the effectiveness of this strategy at

pruning the search space and reducing the number of support counting performed.

However, in order to quickly test if m is a PP, all PP discovered thus far needs

to be stored in a hash-table. This can potentially consume a considerable amount

of space as we explore deeper into the search space. Fortunately, in reality we

only need PP of length n when generating (n + 1)-item candidates. Hence, the

size of the hash table can be roughly cut in half by maintaining only the PP that

is one item shorter than the current candidate.
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Algorithm 3 MineSMDS: Find a set of SMDS over alphabet I from positive

dataset pos (with maximal support δ) and negative dataset neg (with minimal

support α) under the gap constrain {gmin, gmax}
Input I, pos, neg, δ, α, gmin, gmax

Outpu a set of SMDS

1: Q: Empty queue

2: V = φ // set of PP

3: C = φ // set of SMDS

4: while Q.size() > 0 do

5: p = Q.dequeue()

6: for all i ∈ I do

7: s = p+ i

8: if |c| = 1 or (max-suffix(s) ∈ V and elder-twin(s) /∈ C) then

9: supppos = CountSupport(s, pos, gmax, gmin)

10: suppneg = CountSupport(s, neg, gmax, gmin)

11: if supppos ≥ δ then

12: if suppneg ≤ α then

13: C = C ∪ s

14: else

15: Q.enqueue(c)

16: V = V ∪ c

17: return C
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φ

C3

CC12 .........
CB11 .........
CA10 .........

B2

BC9 .........
BB8 .........
BA7 .........

A1

AC6 .........
AB5 .........
AA4 .........

Figure 2.2: An example candidate search space over alphabet {A,B,C}. The

number in the superscript denotes the sequence generation order in a BFS fashion.

2.4.3 On-The-Fly Minimization

The final stage of ConSGapMiner is minimization. During this time, all the

SMDS patterns discovered in the candidate generation stage are compared against

each other to remove any non-minimal sequences. Ji etl. al. have identified the

redundancies in the näıve pair-wise comparison algorithm and proposed a prefix-

tree based minimization algorithm over the set of SMDS presorted in increasing

length.

Because FMM generates candidates in a breadth-first fashion, the SMDS pat-

terns are discovered in the order of increasing length by definition. As a result, the

minimization can be fully integrated into the candidate generation process. We

call this on-the-fly minimization. Specifically, when a new candidate is generated

and meets the support constrains on line 13 of Algorithm 3, it is first tested for

minimality using Algorithm 4 with C and s as input arguments. s is then added

to C if it is indeed minimal, or else discarded.

Note that on-the-fly minimization is not a mere reimplementation of the batch

minimization used in ConSGapMiner without pre-sorting. For one, the new al-

gorithm no longer requires the prefix tree data structure for subsequence testing.
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Furthermore, we change the way exhaustive comparison is performed. Instead of

testing all possible subsequences of s against the existing MDS set, s is tested

to see if it is a supersequence of any sequence in the current MDS set. At first

this may seem counter intuitive as exact sequence matching should be significantly

faster than subsequence-supersequence relationship testing. However, as the num-

ber of all possible subsequences grows exponentially with the sequence’s length,

it out-grows the number of MDS by several order of magnitudes as s gets longer.

Consequently, our comparison process becomes faster on average.

Algorithm 4 IsMinimal: Given a set of existing MDS M , return true if distin-

guishing subsequence s is minimal, else return false
Input M, s

Outpu true if s is minimal, false otherwise

1: for all m ∈M do

2: if FastTest(m, s, 0,∞) is true then

3: return false

4: return true

2.5 Evaluation

In order to evaluate the performance of FMM, we have chosen four datasets from

two fundamentally different sources. They are listed in Table 2.1 along with the

number of sequences and their average length in the pos and neg sets.

pfam1 and pfam2 contain sequences extracted from the Pfam Protein Family

Database [12]. These sequences use the 20 amino acids as the alphabet and are

relatively long in length. The protein families chosen for pos and neg are also

shown in Table 2.1.

stock1 and stock2 are datasets derived from the historic price of S&P 500

companies. The companies are first grouped by their respective industry and their
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Table 2.1: Dataset used in the experiments.

Name pos (# seq, avg. len) neg (# seq, avg. len)

pfam1 SrfB (12, 941.4) Spheroidin (12, 758.2)

pfam2 B5 (85, 69.9) B3 (124, 98.3)

stock1 Technology (72, 60) Utilities (35, 60)

stock2 Health Care (50, 60) Financials (81, 60)

monthly adjusted closing price from the past five years (2006 to 2010) are analyzed.

We compute the monthly price variations and convert them into sequences over the

alphabet {U, S,D}, where U denotes an increase of more than 5%; D represents

a decrease of more than 5%; and S corresponds to a fluctuation within 5%. In

summary, stock1 compares technology companies to large utilities whereas stock2

compares companies in the health care industry to those in the financial sector.

All experiments have been conducted on a 2.7GHz Intel machine with 8GB

of RAM. We compare our results with ConSGapMiner as it is the only pub-

lished MDS mining algorithm to our best knowledge. For fair comparison, both

FMM and ConSGapMiner have been written in Python without employing any

hardware-specific optimization. Moreover, all time-related experiments, such as

those discussed in Section 2.5.1 and 2.5.3, the reported results are the average of

ten repeated experiments.

2.5.1 Support Counting Performance

The first set of experiments aim to study the performance of support counting,

which is one of the determining factors of the effectiveness of a MDS mining algo-

rithm. We exam this in terms of the average time spent for each support counting

process invocation. This is calculated by dividing the number of candidate se-

quences by the total time spent in support counting. While the time may vary

for each procedure invocation depending on the length of the candidate sequence,
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by average over a large number of sequences, the resulting value served as a fair

indicator of the performance.

Figure 2.3 shows the effect of gmax on the support counting performance of

ConSGapMiner and FMM. gmin is fixed at zero since it has minimal impact on

the performance. As gmax becomes larger, it takes both algorithms longer time

to count support for each candidate sequence. However, the increase is notably

more dramatic for ConSGapMiner than for FMM. At gmax = 16, it takes ConS-

GapMiner 1.79 ms to count the support for each sequence on average, which is

more than 10 times longer when gmax = 0. On the contrary, each support counting

process in FMM only takes around 25% longer, from 205 µs to 255 µs, when gmax

is increased from 0 to 16.

As a matter of fact, the performance of FMM is so insensitive to gmax, its data

almost appears as a flat line in the figure when compared to ConSGapMiner. This

is in line with our expectation since the bitset shifting operations in ConSGap-

Miner becomes more expensive with larger gmax.

We then fix gmax at 2 and subject both algorithms to different numbers of se-

quences. As can be seen in Figure 2.4, FMM once again scales considerably better

than ConSGapMiner. When the number of sequences is increased from 10 to 160,

the support counting performance of ConSGapMiner suffers a 15.3 fold drop, tak-

ing more than 1.5 ms to complete each counting. In the case of FMM, while the

support counting process is slightly slower than that of ConSGapMiner when there

are less than 20 sequences, it becomes marked faster with more sequences. With

160 sequences, FMM counts support at 4.2 times faster than ConSGapMiner. It

is also noteworthy that despite a 16-time increase in the number of sequences, it

takes only 2.1 times longer for FMM to perform each support counting on average.
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Figure 2.3: Average time per support counting vs. gmax for pfam1 dataset.
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dataset.
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2.5.2 Pruning Performance

Another way to measure the effectiveness of an MDS ming algorithm is by ana-

lyzing its pruning power. By pruning more non-MDS candidates, an algorithm

in turn performs fewer support countings, which ultimately improves the perfor-

mance. In this section we gauge the pruning power of FMM and ConSGapMiner

by using two metrics, numbers of candidates generated and redundancy.

A candidate means a un-pruned sequence generated in the search space, and

its support must be counted to determine if it is a PP, SMDS, or neither. As a

result, the number of candidates essentially dictates how many times the support

counting process is called. Figure 2.5 shows the number of candidates generated

at different δ levels for ConSGapMiner and FMM. Note that because the number

of candidates grow in a qusai-exponential fashion as δ decreases, we choose a

logarithmic scale for the y-axis to better demonstrate the difference between the

two algorithms. Based on the figure, it is obvious that FMM consistently generates

fewer candidates than ConSGapMiner for all four datasets. The most significant

difference occurs in pfam2 dataset at δ = 0.2, where FMM generates 5.8 times

fewer candidates than ConSGapMiner. This equals to a reduction of 82%. Since

the search space shrinks as δ increases, the difference between the two algorithms

become less dramatic. For stock2 dataset at δ = 0.4, ConSGapMiner generates

about 38% more candidates than FMM does.

For the redundancy experiments, we compute the metric as follows,

redundancy =
|SMDS| − |MDS|
|SMDS|

In other words, redundancy is the ratio of distinguishing subsequences that

are eventually discarded during the minimization process. An ideal algorithm

would employ a pruning strategy that avoids as many non-minimal distinguishing

subsequences as possible and thus attains a near zero redundancy. Based on the
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results demonstrated in Figure 2.6, FMM is much closer to the ideal algorithm

than ConSGapMiner. In the case of stock1 at δ = 0.1, 93% of the distinguishing

sequences discovered by ConSGapMiner are redundant, whereas 79% of those

discovered by FMM are redundant. Therefore, not only does ConSGapMiner

waste more time on mining useless sequences, but it also ends up spending more

time in the minimization process.
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Figure 2.5: Number of candidates generated vs. δ. All y-axes are in logarithmic

scales.
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Figure 2.6: Redundancy vs. δ.

2.5.3 Overall Performance

After comparing the support counting performance and pruning power individu-

ally, we look at the overall performance of FMM in comparison to ConSGapMiner.

The performance is measured based on the runtime of the algorithm over the four

datasets. The experimental results can be found in Figure 2.7. Once again, we

opt to use logarithmic scale for the y-axis so the difference is clearly visible at

smaller values. The specific parameters used for each dataset can also be found

on top of its corresponding figure.
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Based on the results from previous sections, it should not be surprising to

see that FMM consistently outperforms ConSGapMiner at different δ levels. The

difference is most notable with smaller δ, where FMM is 7.7 and 6.1 times faster

than ConSGapMiner for pfam2 (δ = 0.2) and stock2 (δ = 0.1), respectively.

This is mainly due to the fact that the candidate search space tends to grow

significantly larger at smaller δ, which enables FMM to prune more effectively

than ConSGapMiner. However, even at very high delta level, e.g. pfam1 (δ =

0.9), FMM still manages to complete in less than one-third of the time used

by ConSGapMiner. The two algorithm differs the least on when δ is set to 0.3

for stock2 dataset. It takes ConSGapMiner 14.55 seconds to mine all the MDS,

whereas it takes 7.71 seconds for FMM to do the same.

2.5.4 Memory Usage

In this section we examine the memory usage of ConSGapMiner and FMM when

mining MDS from different numbers of sequences. In order to demonstrate the

effect of large numbers of sequences, we generate extra sequences from the pfam2

dataset by randomly modifying sequences in the same group. The peak memory

usage of both algorithms are illustrated in Figure 2.8.

As noted previously in Section 2.4.1, ConSGapMiner maintains multiple bit-

sets for each sequence in the dataset to speed up the support counting process.

Consequently, the space requirement is expected to scale linearly as the number

of sequences increases, which is clearly visible in the figure. In fact, the memory

footprint of ConSGapMiner more than doubles as the number of sequences is in-

creased from 100 to 1600. On the other hand, the peak memory usage of FMM

remains fairly constant regardless of the number of sequences. This is largely

owing to its memory efficient FastTest subsequence algorithm. The results are

relatively uniform for the other datasets and are therefore not included here.
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Figure 2.7: Runtime vs. δ. All y-axes are in logarithmic scales.

2.6 Summary

Minimal Distinguishing Subsequence is a salient and succinct way to contrast

different classes of sequences, and has many applications in the field of bioinfor-

matics, time series analysis, and machine learning. However, the problem of MDS

mining is also extremely challenging with a complexity that grows exponentially

with the size of the dataset. This paper presents a new algorithm, called FMM,

that makes mining of MDS from large datasets practical.

FMM employs a fast and memory-efficient subsequence testing procedure, a
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Figure 2.8: Peak memory usage vs. number of sequences for pfam2 dataset.

BFS-based candidate generation scheme with powerful pruning strategies, and a

simple on-the-fly minimization process. Together these changes make FMM a

much more scalable algorithm than the state of the art MDS mining algorithm,

ConSGapMiner.

We use four real-world datasets to demonstrate the performance advantage of

FMM over ConSGapMiner. The experimental results show that FMM consistently

outperforms ConSGapMiner by a factor of 1.9 to 7.7 times over a wide range of

δ. This is mainly due to the facts that a) FMM’s support counting process scales

significantly better with gmax and the number of sequences than the bitset-based

approach used by ConSGapMiner; b) The max-suffix pruning strategy employed

by FMM proves to remove the number of generated candidate sequences by 27%

to 82% over a wide range of δ. The strategy also helps reduce the number of non-

minimal distinguishing subsequences, which in turn speeds up the minimization

process. In terms of space usage, thanks to the memory-efficient subsequence

testing algorithm and on-the-fly minimization, the peak memory usage of FMM

remains constant despite a 16-fold increase in the number of sequences. At the
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same time, ConSGapMiner needs to more than double its memory footprint to

accommodate the extra sequences.
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CHAPTER 3

Precursor Pattern Discovery

In this chapter we present a generalized algorithm that discovers potential precur-

sor patterns without prior knowledge or domain expertise. The algorithm makes

use of wavelet transform and information theory to extract generic features, and

it is also classifier agnostic. Based on experiment results using three distinct

datasets collected from real-world patients, our algorithm has attained perfor-

mance comparable to those obtained from previous studies that rely heavily on

domain-expert knowledge. Furthermore, the algorithm also discovers non-trivial

knowledge in the process.

3.1 Background

Recent advancements in sensor and wireless communication technologies have

opened up many opportunities to acquire biomedical signals at a very low cost.

Many sensors, such as the ones described in [71], are compact enough to be worn

by the subjects, and can continuously gather data for a prolonged period. These

technologies have quickly found their natural applications in health care in the

form of eHealth and telemedical systems.

Most of the early eHealth systems focus on remote monitoring and abnormality

detection. For example, [31] presents a system that monitors patients with Type

I diabetes using a glucometer connected to a mobile phone. A more sophisticated

system is presented in [86] where health care professionals are alerted when the

51



reading from one of the many biosensors falls outside the normal range. An

extensive list of other similar systems can be found in [70]. While providing a

low-cost and convenient way for health care personnel to monitor the well being

of patients, the majority of these systems are essentially infrastructures for data

collection and storage.

One of the main goals of the next generation eHealth system is to mine and

analyze the sensor data for the so-called precursor patterns. These patterns are

highly correlated to an ensuing medical condition or clinical episode that they

served as good prognoses. Thus far there have been several studies dedicated

to identifying precursor patterns with a varying degree of success. For example,

in [60], an automatic prognosis system is presented to predict the mortality of

ICU patients based on heart rate variability and vital signs using support vector

machine (SVM). An accuracy between 60% and 80% is reported depending on the

parameters used. On the other hand, Yien et. al discover that the low-frequency

components of spectrum of arterial pressure and heart rate are highly correlated

to the survival of ICU patients and hence can be used as a reliable predictor of

the outcome [94].

Another area where extensive research has been carried out on searching pre-

cursor patterns is epileptic seizure prediction. Different features of electroen-

cephalography (EEG) signals, including Lyapunov exponents [35], correlation di-

mension [52], and accumulated energy [30], have been utilized to construct predic-

tive models (see [64] for a comprehensive list). Other precursor pattern discovery

algorithms have been developed for various clinical episodes such as sleep ap-

nea [74], arrhythmia [2], and acute hypotension [6].

However, one common problem with these studies is the requirement of domain-

specific knowledge to develop their discovery algorithms. Also most of the algo-

rithms require prior knowledge of the duration of the precursor patterns, as well

as the time the patterns are likely to occur relative to the clinical episode. Con-

52



Signal 
Preprocessing 

Feature 
Extraction 

Feature 
Selection 

Classification & 
Validation 

Adjustment Feedback 

Prediction 
Model 

Raw signal Segments Wavelets Top Features Performance data 

Figure 3.1: The precursor pattern discovery process.

sequently, it is often impossible to apply these algorithms to a different medical

condition without significant modification or degradation in performance.

In the remaining sections we present a new generalized precursor pattern dis-

covery algorithm that works with a wide range of biomedical signals and applica-

tions. The algorithm does not require domain-specific knowledge, hence it is also

possible to discover patterns unknown to experts.

3.2 Precursor Pattern Discovery

The precursor pattern discovery process consists of four stages: a) Signal Pre-

processing, b) Feature Extraction, c) Feature Selection, and d) Classification and

Verification. At the end of the process, a group of precursor patterns are identified

along with a statistical model that can be further used to predict future clinical

episodes. The process is depicted in Figure 3.1.

3.2.1 Signal Preprocessing

The first stage of precursor pattern discovery is signal preprocessing. The raw

signals received from the sensors often require calibration and filtering. However,

this step is often extremely difficult to be generalized due to many application-

specific factors, such as the characteristics of the sensor, the transmission noise and

error rate, and sensor manufacturing process variation. As a result, we assume
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that the signals have first been properly calibrated and filtered based on the

application of interest.

After the preprocessing, we need to extract the segments, known as the positive

segments, where the precursor patterns may occur. A positive segment is a fixed

portion of the signals t seconds before the clinical episode. t is called the prediction

horizon and typically ranges from a few seconds to several minutes depending on

the application. We also need to extract equal-length segments that are known

to contain no precursor patterns. This is normally achieved by using signals from

healthy subjects or from the portions of the signals that are distant from any

clinical episodes. These segments are known as negative segments and are used in

conjunction with the positive segments in later stages.

3.2.2 Feature Extraction

After the signals have been properly calibrated and segmented, we extract fea-

tures from both the positive and the negative segments. Given that we are only

interested in features that do not require domain-specific expertise, these features

must be generic and easily extractable for most applications. Furthermore, even

though the precursor pattern should occur before the particular clinical episode,

there is no prior knowledge about its precise time and duration. This makes it

even harder to extract the correct features.

In order to overcome these difficulties, we choose to extract features that en-

compass both spectral and temporal information of the signal. The spectral infor-

mation is generic and widely applicable, whereas the temporal information helps

us identify the time and length of the precursor pattern. An ideal candidate

for capturing both kind of information is wavelet transform, where the signal is

represented using orthonormal function basis called mother wavelet. There are

a number of different types of wavelet transforms differentiated mainly on the
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mother wavelet used. In our system we have chosen the Haar wavelet transform,

also known as Daubenchies-2, because of its low O(n) complexity and because it

is shown to work well with time series data [84]. Using the mother wavelet

ψ(t) =


1 0 ≤ t < 0.5,

−1 0.5 ≤ t < 1,

0 otherwise.

and the scaling function

φ(t) =

 1 0 ≤ t < 1,

0 otherwise.

we can compute the wavelet coefficients at multiple resolutions, each at half of

the scale of the previous one. These coefficients are then used as features of the

signal segment.

3.2.3 Feature Selection

The number of wavelet coefficients grows as the length of the prediction hori-

zon lengthens. For example, a one minute prediction horizon on a 128Hz signal

generates a total of 7680 coefficients. Building a model using every coefficients

available is not only slow, but also likely to result in overfitting. In reality, only

a small portion of the coefficients actually correlate to the clinical episode, and

thus constitute the precursor pattern. In this stage we try to identify the most

promising wavelet coefficients by means of feature selection.

Generally speaking, there are three types of feature selection algorithms: Wrap-

per, Embedded and Hybrid. While Embedded and Hybrid feature selection al-

gorithms tend to select stronger features, they only work with a specific model

and classification methods. This precludes them from being used in a generalized

environment. On the contrary, Wrapper algorithms select features purely based
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on their natures, such as correlation, relevance and redundancy, and are therefore

model-agonistic. In our system we use Information Gain as basis for feature selec-

tion. The Information Gain (IG) for a feature fi given a set of training samples

SX is

IG(SX , fi) = H(SX)−H(SX |fi)

H(S) is the information entropy of S

H(S) = −
n∑

i=1

p(Si) log p(Si)

The conditional entropy H(SX |fi) is therefore

H(SX |fi) =
∑
x∈SX

p(x, fi) log
p(fi)

p(x, fi)

In other words, IG(SX , fi) is the change in entropy if fi is known in advance.

A feature with small IG is considered less relevant and can thus be discarded

without weakening the classification model.

3.2.4 Classification and Verification

The last stage of the discovery process involves constructing a statistical model for

the selected features and verify the performance of the precursor pattern. Note

that during this stage, it is important to separate the training data from the

testing data to prevent model overfitting and overly optimistic results. However,

if the number of positive segments is limited due to the rare nature of the clinical

episode, it is also possible to perform n-fold validation using the same number of

positive and negative segments.

Since our algorithm is designed to be classifier-agonistic, theoretically any

type of classifier can be used to validate the results. Nevertheless, we recommend
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validating the results using multiple types of classifiers that differ substantially in

terms of the underlaying statistical models. Doing so ensures that the discovered

precursor patterns is generic and robust.

Furthermore, if the results indicate that the precursor pattern does not provide

satisfactory classifying power, the process should repeat itself with different pa-

rameters for preprocessing, feature extraction and feature selection. For example,

one may discover that limiting the number of features from the top 100 to top 50

helps to prevent the classifier from overfitting its model, and thus improves the

final result.

3.3 Experiment Results

3.3.1 Dataset and Setup

We use the following three large, real-world, and publicly available datasets from

PhysioNet [34] to evaluate our work:

1. chbmit : This dataset is collected at the Children’s Hospital Boston. It

consists of EEG recordings of 22 pediatric subjects with epileptic seizure.

The EGG signals are sampled at 256Hz with 16-bit resolution. During the

800 hours of recordings, there are 129 instances of annotated seizure attacks.

2. apnea-ecg : This dataset comprises 70 records of a continuous Electrocardio-

graphy (ECG) signal, sampled at 100Hz with 16-bit resolution, and a set of

apnea annotation derived by human experts at 1-minute interval. The total

recording lasts about 500 hours.

3. MIMIC II : The dataset is made up of 4448 records from ICU patients. The

records include ECG, blood pressure, respiration, and vital signs. There are

also alerts annotated automatically by ICU monitor.
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For each dataset, we perform the process described in Section 3.2 to identify

the precursor patterns and use seven well-known classifiers to validate their perfor-

mance. The classifiers used are Näıve Bayes, Bayes Network, Logistic Regression,

C4.5 Decision Tree, SVM, Voting Feature Interval (VFI), and Artificial Neural

Network (ANN).

3.3.2 Prediction Accuracy

The first metric used to evaluate the performance of our precursor discovery al-

gorithm is prediction accuracy. Given the limited number of positive segments

in the dataset, we choose to conduct the experiment using 10-fold validation. A

10-minute prediction horizon is used throughout the experiment and the same

number of positive and negative segments are used in each case to prevent screw-

ing.

From the results listed in Table 3.1, it is clear that the prediction accuracy is

fairly consistent for all three datasets regardless of the type of classifier used. The

highest accuracy of 84.7% is achieved using SVM based on the precursor patterns

from apena-ecg, whereas Logistic Regression is only able to predict 75.4% of the

alerts in MIMIC II. Overall, C4.5, SVM and ANN perform slightly better than

other classifiers in terms of prediction accuracy. Note that while the results here

are comparable to many of those reported by studies listed in Section 3.1, our

algorithm does not require any medical domain expertise to attain this level of

accuracy.

3.3.3 False-Positive Rate

The second part of the experiment investigates the false-positive rate, measured

in number of false-positive per hour. A balanced algorithm should not give up

false-positive rate in favor of unrealistically high prediction accuracy [64]. To
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Table 3.1: Prediction Accuracy

chbmit apnea-ecg MIMIC II

Näıve 77.8% 81.5% 78.7%

Bayes Network 79.8% 80.6% 79.3%

Logistic Regression 76.7% 79.3% 75.4%

C4.5 81.3% 82.1% 80.9%

SVM 80.2% 84.7% 82.1%

VFI 79.4% 79.7% 78.8%

ANN 79.8% 81.5% 81.3%

measure false-positive rate, the precursor patterns and models are used to classify

all unseen negative segments in the dataset. Ideally none of these segments should

trigger a positive prediction, thus resulting in 0 false-positive rate.

Table 3.2 shows the false-positive rate of all three datasets using different types

of classifier. chbmit and apnea-ecg produce similar false-positive rate ranging from

0.29/hr to 0.91/hr, which is considerably higher than that of MIMIC II. One

possible explanation for the difference is misalignment. The annotation in chbmit

and apnea-ecg are both done manually, whereas MIMIC II contains automatic

annotations generated by machines. The false-positive rate should reduce if the

annotations are properly aligned.

In terms of differences between classifiers, C4.5 once again produces the best

overall results, followed closely by SVM and ANN. While Logistic Regression

achieves the lowest false-positive rate of 0.04/hr for MIMIC II, it performs poorly

for chbmit. The inconsistent suggests that Logistic Regression may not be a

suitable classifier for our generalized algorithm.

59



Table 3.2: False-positive Rate

chbmit apnea-ecg MIMIC II

Naive Bayes 0.52/hr 0.41/hr 0.17/hr

Bayes Network 0.49/hr 0.39/hr 0.11/hr

Logistic Regression 0.91/hr 0.33/hr 0.04/hr

C4.5 0.33/hr 0.29/hr 0.05/hr

SVM 0.37/hr 0.27/hr 0.13/hr

VFI 0.45/hr 0.38/hr 0.20/hr

ANN 0.51/hr 0.44/hr 0.06/hr

3.3.4 Precursor Pattern Interpretation

One of the strengths of our generalized algorithm is the ability to discover non-

trivial patterns. For example, when selecting the most prominent features in the

chbmit dataset, we discovered that the top-100 features consist entirely of signals

acquired from only two EEG channels, F4−C4 and Fp1−F3, which are highlighted

in Figure 3.2. In other words, these are the only two channels that are relevant

when it comes to seizure prediction.

Figure 3.3 demonstrates another interesting characteristic uncovered by our al-

gorithm. The figure shows the temporal-spectral distribution of the top-100 most

relevant features for the MIMIC II dataset. The majority of features concentrate

at the lower left corner with frequency less than 50Hz and within 5 minutes prior

to the alerts. This suggests that a reliable prediction can still be made even if

the signals were sampled at a lower sampling frequency with a shorter prediction

horizon.
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Figure 3.2: International 10-20 EEG electrode placement map with the channels

most relevant to seizure prediction highlighted.
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Figure 3.3: Distribution of top 100 features for MIMIC II.
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3.4 Summary

As continuous remote monitoring becomes more prevalent, the demand grows

stronger for discovering precursor patterns in biomedical signals which predict

medical conditions and clinical episodes. In this chapter, we present a generalized

algorithm that is able to discover such patterns without domain-specific knowledge

and expertise. The algorithm is classifier agonistic and is applicable to a wide

range of medical conditions. Experiments using three real-world datasets show

that the algorithm can achieve a prediction accuracy as high as 84.7% without

producing high false-positive rate. Furthermore, using the precursor patterns we

are able to infer non-trivial knowledge such as the most relevant EEG channels

to predict epileptic seizure and the minimal sampling rate required for predicting

ICU alerts.

62



CHAPTER 4

Predictions Using Discrete Data

Not every remote monitoring system is capable of capturing and storing con-

tinuous data stream. In fact, many current systems are still largely limited to

collection data from discrete type of sensors, such as weight scale, blood pressure

monitor, glucometer, etc. This chapter introduces the design and implementa-

tion of WANDA, an end-to-end remote health monitoring and analytics system

designed specifically for heart failure patients. WANDA supports the collection of

data from a wide range of discrete sensory devices. The collected data are stored

in an Internet-scale data storage and search system. WANDA also provides a

backend analytics engine for diagnostic and prognostic purposes.

Tthe practicality and efficacy of WANDA through several clinical trials, in-

cluding an on-going heart failure and readmission trial that involves up to 1500

HF patients. Using the data gathered in the clinical trials and machine learning

techniques, it has been demonstrated that WANDA is capable of predicting the

worsening of patients’ heart failure symptoms with up to 74% accuracy as well as

achieving at least a 45% improvement in sensitivity compared to the commonly

used thresholding algorithm based on daily weight change. Moreover, the accuracy

is only 9% lower than the theoretical upper bound.
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4.1 Background

Heart failure (HF) is one of the leading causes of death in the US and around the

world for adults over 65 years of age [61]. Nearly one-forth of the patients treated

for HF are re-hospitalized within 30 days, and almost half of them are readmitted

within 6 months [75]. These unplanned readmissions are estimated to cost the

American healthcare system more than $17 billion annually, or 15% to 20% of the

total Medicare expenditure in acute hospital care [43].

To reduce the morbidity, mortality, and economic cost associated with HF,

remote health monitoring appears to be a promising solution that can work at

scale. However, a major challenge to the realization of a large-scale remote mon-

itoring system is the ability to collet, store, and process the large amount of data

gathered from the sensors in an effective, robust, and automated fashion. Further-

more, in order for remote health monitoring to be truly successful, it should also

be able to perform intelligent analysis on collected data. This means the system

should provide a wealth of analytical algorithms that can infer useful information

or discover predictive patterns from the data. Armed with the information, early

interventions can be made to prevent the medical event from happening. Unfor-

tunately, most current remote monitoring systems lack such advanced analytics

capabilities.

In the remaining sections, we present the design and implementation of WANDA,

a remote health monitoring system for HF patients. The system is an end-to-end

solution that covers all key aspects of remote health monitoring, from data collec-

tion, data storage and access, to data analytics. It also features several auxiliary

tools such as an administrative portal, a questionnaire system, and a social net-

work component. The practicality and efficacy of WANDA has been validated by

three clinical trials over the past 4 years.

We also showcase the analytics engine of WANDA by processing real clinical
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data and generating statistical models that significantly improve the accuracy

of predicting the worsening of HF patients’ symptoms when compared to the

traditional thresholding algorithm based on daily weight changes.

4.2 Related Work

The use of technology to monitor patients at a distance is increasingly gaining

attention as a strategy to improve the care of patients with chronic diseases.

Remote patient monitoring systems provide the opportunity for a better follow-up,

early detection of signs of clinical deterioration, and early intervention to prevent

hospitalization or even death. Several studies targeting the remote monitoring of

heart failure patients have been conducted in the past 5 years.

Chaudhry’s telemonitoring study [19] required participants to make daily phone

calls to an automated telemonitoring system (provided by Pharos Innovations [5])

for a period of 6 months. Each call played a prerecorded voice message that

consisted of a series of questions about symptoms and weight for which the par-

ticipants had to provide answers using the keypad on the phone. The responses

were then downloaded from the telemonitoring system to an Internet website for

daily review by clinicians. However, this study proved to be unsuccessful in re-

ducing the risk of readmission or death in heart failure patients, compared to

standard care.

Another heart failure study conducted by Soran [79,80] included an electronic

scale and an individualized symptom response system (Alere DayLink monitor)

connected to a computer database via a standard phone line. Patients were in-

structed to weigh themselves and answer a series of heart failure questions daily.

Nurses reviewed the transmitted data on a daily basis and immediately contacted

patients whenever the data fell out of a healthy range. After contacting the

patient, the nurses immediately notified the patient’s primary physician of any
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symptom changes by means of a fax report. Again, this study showed no im-

provement in clinical outcomes when compared to standard care of heart failure.

The Home or Hospital in Heart failure (HHH) study is another study that was

conducted to evaluate a home telemonitoring system to supervise heart failure

patients outside the hospital setting [65]. In this study, patients took weekly

measurements of their weight, heart rate and blood pressure. Measurements were

then entered via a phone keyboard, in reply to questions from a computerized

interactive voice response system. Electrodes were attached to the patients’ bodies

to allow for a 24-hour cardiorespiratory monitoring. Since the raw ECG signal

could not easily be transferred through the standard telephone lines, only the RR

time series was actually transmitted to a database and then to an analysis center,

together with the other measurements. Despite high patient compliance (81% of

vital signs transmissions and 92% of cardiorespiratory recordings were completed)

results showed no significant effect of remote health monitoring in reducing bed-

days occupancy, cardiac death or hospitalization when compared to usual care of

HF.

According to Desai [26], an effective home monitoring system must contain the

necessary elements that together complete the circle of heart failure management.

Some of the important circle elements are the reliable measurement of physio-

logical variables that can help in the early detection of adverse events, efficient

transmission of data to enable a timely response, the direct reception of data by

personnel qualified to recommend an effective intervention, and patient adherence.

The lack of significant differences between the telemonitoring solutions used

in Chaudhry, Soran’s and the HHH studies and routine care with regard to read-

mission rates or death can then be explained by several breaks in this circle.

In Chaudhry and Sorans’ studies, the lack of patient adherence as well as the re-

quirement for decision making by midlevel providers to be supervised by physicians

may stall timely responses to detected early signs, especially in large-scale studies.
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More importantly, however, weight and symptoms alone do not suffice as accurate

and responsive measures for the early prediction of heart failure. Although rapid

weight gain is a relatively specific predictor of heart failure decompensation, it is

not a very sensitive marker because weight can vary with changes in caloric intake

and the quantity of weight gain before hospitalization is typically fairly modest,

with fewer than 50% of patients gaining more than 2 lb (0.9 kg). Therefore, using

weight as the only measure is inadequate to recognize impending decompensa-

tion in sufficient time to intervene to prevent hospitalization [25]. These reasons,

among other things, disrupt Desai’s circle of HF management, preventing even an

effective intervention from improving outcomes in practice. Although the HHH

study measures three different markers (weight, heart rate and blood pressure)

as well as continuous cardiovascular signals, it severely violates the efficient data

transmission and timely response element of the circle. Since the measurements

are only taken and transmitted once every week and the data is transmitted over

a slow telephone line (as is the case in [20] and [79]) the transmission of rich

raw ECG data is hindered and the granularity of intervention is very coarse for

effective outcomes to be observed.

It is therefore necessary to design a remote monitoring system that can effec-

tively close or at least tighten the circle of management in practice by encouraging

patient compliance, offering a reliable measurement of accurate physiological vari-

ables that can enable early detection and efficiently transmitting data to permit a

timely response. WANDA is an automated real-time scalable remote health mon-

itoring system developed with these results and findings in mind and designed to

address all of these requirements.

While many systems exist today that offer remote monitoring for heart failure

patients, they are either invasive, requiring sensors to be attached to a patient’s

body or implanted inside of it, cumbersome and complicated that specially trained

technicians are required just to set them up, or they are reactive in nature [14]
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Figure 4.1: Overall architecture for WANDA

where patients are contacted only when their symptoms are already exacerbated

or they are not feeling well. WANDA, in contrast, is a noninvasive, easy-to-use,

proactive remote monitoring system for heart failure patients that can detect early

vital signs and predict adverse events using a set of powerful algorithms.

WANDA is a three-tier, end-to-end remote monitoring system with extensive

hardware and software components designed to cover the broad spectrum of the

telehealth and remote monitoring paradigm. The overall architecture is summa-

rized in Figure 4.1.

The first tier of the architecture consists of a data collection framework, which

is formed from a heterogeneous set of sensing devices that measure various bodily

statistics such as weight, body fat, body water, blood pressure, heart rate, blood

glucose, blood oxygen saturation and body movements. The data from these sen-

sors are collected, processed, and transmitted via a smartphone-based gateway
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to the cloud—the second tier of the WANDA architecture. The large amount of

data are stored and indexed using a scalable database and can be accessed easily

using a RESTful style web interface [32]. The last tier of the WANDA architec-

ture is a backend analytics engine capable of continuously generating statistical

models and predicting outcomes using various machine learning and data mining

algorithms. In the following sections, we describe each component of the system

briefly; however, the main focus of this section is on the analytics engine and the

new features that it provides for health care management.

4.2.1 Data Collection

Due to the increasingly ubiquitous nature of smartphones and their portability

and connectivity, we decided to utilize an Android smartphone as a central hub for

receiving patient measurements and communicating them to the WANDA server.

All the devices we utilized are Bluetooth enabled. Users can readily collect data

on their WANDA smartphone application (WANDA App). It provides a user-

friendly data management tool for the patient, while transmitting data to a central

WANDA server for storage and backend data analytics.

The WANDA App was designed to run on any device running Android OS

version 2.0 or above and is compatible with multiple sensing devices. Before the

phone can establish a connection with any device, a pairing process is required.

When two Bluetooth nodes are paired, they are aware of each other’s existence,

have a shared-link key that can be used for authentication, and are capable of

establishing an encrypted connection. Once two devices are paired, the basic

information about the device such as device name, class, MAC address is saved

and no more pairing is needed in the future. For security reasons, we require

users to specify the sensors that they intend to use and the phone only accepts the

connection request from these devices. Depending on the device, the phone can act

as a slave or master. The device data are received by the Bluetooth service module,
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before they are processed by a measurement module. The measurement module

then stores the information through a record module. The history module provides

a data management tool for users to analyze their own data, and the services

module performs activity recognition and other sensor services in a background

thread. All the data are then displayed to the user through a graphical user-

interface (GUI) module that interacts with the user.

4.2.2 Storage and Access

WANDA takes advantage of Amazon’s highly scalable cloud data storage to handle

its growing storage needs. Amazon S3 provides data security through multiple ac-

cess control mechanisms and encryption for both secure transit and secure storage

on disk. Data durability and reliability are guaranteed by Amazon’s redundant

storage and regular verification and repair of corrupted stored data. Security and

reliability are by far the most important considerations for a data storage and

management system used for storing confidential medical patient information.

We also use Amazon’s SimpleDB to store structured data such as patient and

sensor information, data indices, adverse events, and data annotations. SimpleDB

is a NoSQL database management system as opposed to the traditional relational

database. It offers superior scalability and an extremely flexible database schema.

The latter is particularly important as it allows data stored in WANDA to be both

backward and forward compatible without undergoing painful schema migrations.

However, the NoSQL nature of SimpleDB presents several technical challenges

when it comes to data access. For example, SimpleDB lacks many features com-

monly found in a relational database such as the JOIN operation and full ACID

guarantee. This makes it complicated to develop software that interacts with

the database directly. As a result, we have developed an intermediate layer that

provides a web-based RESTful interface for the developers. Not only does this
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interface free the developers from learning the specifics of SimpleDB, it also gives

a pseudo object-oriented structure to the database. Table I gives a few examples

of RESTful resources with available methods and expected results.

The WANDA database also features a Publisher-Subscriber (PubSub) interface

for applications that need to be notified of changes to the database in real-time.

For example, a simple safety system may wish to check every blood pressure

reading and alert the medical staff when the reading exceeds or falls below a

certain value. Instead of polling the database at a regular interval, the system can

subscribe to the blood pressure topic published by the database. It then receives

a notification via HTTP requests or email whenever a new reading is added to

the database. The database publishes a wide range of topics on addition, editing,

and removal of objects at both fine- or coarse-grained levels, e.g. for a particular

patient or for all patients from a particular study.

4.2.3 Data Analytics

One of the strengths of WANDA over other remote health monitoring systems is

its analytics engine. Based on the data and annotations collected, the analytics

engine can generate multiple statistical models using various machine learning

and data mining algorithms, including classification, clustering, association rule

mining, etc. These models can then be used for both diagnostic and prognostic

purposes. For example, in the case of HF patients, it is highly desirable to be able

to predict the worsening of symptoms before the patient is actually hospitalized.

The analytics process normally consists of two stages. Firstly, the data are

downloaded and analyzed offline based on various hypotheses. Once a strong

model has been generated and validated, it can then be uploaded to the server to

perform online prediction. One of the challenges here is to optimize the algorithm

so that it can be executed in a real-time fashion. This often requires using the
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PubSub data access interface, in conjunction with a temporal storage for pre-

computed historic data. Finally, when the algorithm detects a pattern that is

strongly associated with an undesirable outcome, an alarm is triggered and the

personnel in charge are contacted immediately.

The analytics engine integrates nicely with the Weka framework [36]. This

allows the engine to support a wealth of commonly used machine learning and

data mining algorithms. Furthermore, an API is also provided for adding new

algorithms to the engine.

4.2.4 Supporting Tools

We have also developed a number of tools that work closely with the core WANDA

system to support the need of various clinical trials and studies. These tools in-

clude an administrative portal, a questionnaire system, and social network appli-

cations.

4.2.4.1 Administrative Portal

A Web-based tool serving as a study and information management platform was

developed in-house. The tool is a web application that facilitates labeling, an-

notating and entering data into the database. Medical clinicians and nurses can

easily enter information including patient demographics, like gender, age and eth-

nicity, as well as notes of events like hospital discharge, hospitalization or death.

The data is stored in the second tier of the system described in Section 3.2. In

addition to data entry and data annotation, the tool also offers a rich and cus-

tomizable interface that provides advanced search functionality for stored data.

The search results can also be visualized in the form of graphs and charts to dis-

play information like patient measurements over time. Good data visualization

can enhance fast diagnostic decision making based on simple trends seen in the
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displayed data, like a constantly increasing weight, for example. Data annotation

also serves our analytics engine by providing our algorithms with more training

data. The web application was implemented in JAVA using Google Web Toolkit

(GWT), a development toolkit that creates highly-optimized Web applications.

The tool provides easy navigation through different panels to deliver an intuitive

user experience.

4.2.4.2 Questionnaire System

Another supporting tool for WANDA is the questionnaire system. Questions

about symptoms are entered by clinicians into the administrative portal described

in Section 3.4.1 and are made available on the patient’s Android phone on at a

predefined frequency. The patients can answer the heart failure symptom ques-

tions using the phone’s keyboard or touch screen. The user responses are then

uploaded to the WANDA storage platform described in Section 3.2. Medical staff

can then access these responses using the administrative portal.

4.2.4.3 Social Network Applications

WANDA Social is WANDA’s social component which can be a powerful tool for en-

couraging healthy behavior as well as improving patient compliance. A Facebook

application was developed in-house to offer two motivating factors: cooperation

and competition. By connecting with people with similar conditions and health

concerns, users can work together and encourage each other to achieve a common

goal like losing weight, for instance. The application also provides competitive

events such as online tournaments, where users can challenge each other to ac-

complish certain health-related tasks like lowering their blood pressure to a healthy

level within a time frame. A leaderboard and nominal prizes can motivate users

to achieve the greatest improvement in a given health indicator. The WANDA
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Social platform was fully integrated with Facebook to take advantage of its large

user base. To respect the user’s privacy, the application will allow authenticated

and registered participants of the study to post their information, e.g. sensor

readings and achievements, using their real identity or as anonymous users. By

tapping into cooperative and competitive relationships through WANDA Social,

we can motivate patients to adhere to a treatment regimen or adopt a healthier

lifestyle.

4.2.5 Clinical Trials

Since November 2009, the WANDA system has been used for health data collection

on the intervention arm including 26 different congestive heart failure patients

[85]. The population of this first clinical trial is approximately 68% male; 40%

White, 13% Black, 32% Latino, and 15% Asian/Pacific Islander, with a mean

age of approximately 68.7 12.1. The gender distribution and anticipated age of

participants are representative of the incidence and natural history of congestive

heart failure. Study participants were all provided with Bluetooth weight scales,

blood pressure monitors, and personal activity monitor devices.

The second clinical trial of WANDA started on February 2011 with 18 low

literacy Latinos with heart failure. This population is disproportionately affected

with HF, is more likely to be hospitalized with HF, and is at greatest risk for

re-hospitalization, and dying from HF. The population of the participants in this

study is approximately 89% male with a mean age of approximately 54. Study

participants were provided with Bluetooth weight scales, blood pressure monitors,

landline or Ethernet gateways, and Android activity monitoring applications.

Finally, the system is currently deployed in a much larger study that targets the

remote monitoring of 1500 patients of 50 years or older with heart failure problems.

This on-going project is conducted in collaboration with the UCLA Department of
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Medicine, UC-Davis, UCSF, UCI, UCSD, and Cedar Sinai Hospital. Heart failure

patients who were hospitalized at any of the six participating medical centers are

being considered to be recruited in either the control or intervention arm through

a randomized trial process. Data collection for this study has started in November

2011 and is scheduled to end in April 2013. Patients measure their weights and

blood pressures and reply to questionnaires on a daily basis, and the collected

data are transmitted to the database via a phone-line, an Internet connection at

home, or through cellular networks. We have currently enrolled more than 400

patients in the study.

4.3 Symptom Prediction

In order to demonstrate the capability of the WANDA analytics engine, we use

the dataset gathered from one of the clinical trials to predict the worsening of HF

symptoms using advanced machine learning algorithms.

So far the most widely used metric to predict the worsening of HF symptoms

is Daily Weight Change (DWC). It is even recommended by American College of

Cardiology/American Health Association as a potential indicator for water reten-

tion, which leads to swollen ankles and other HF symptoms [39]. However, several

studies have shown that DWC has relatively weak correlation with the worsening

of HF symptoms [20,53,98]. We have also experienced the poor predictive power

of DWC first -hand during our clinical trials. When the medical staffs follow up

when a DWC of more than 2lb was observed, the patient almost always attributes

the change to food or normal weight fluctuation and denies any worsening of HF

symptoms.

The case of using DWC as a predictor is further weakened from the example

depicted in Figure 4.2. The figure shows systolic and diastolic blood pressure

(SBP & DBP) and weight readings from the same patient over two separate 7-day
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Figure 4.2: 7-day blood pressure and weight readings of a patient when (a) wors-

ening of HF symptom is reported, and (b) no change in HF symptom is reported

periods. By the 7th day in Figure 4.2a, the patient is known to have reported

worsening of HF symptoms, whereas the patient reported no change in symptom

during the 7-day period in Figure 4.2b. Although the weight has fluctuated in

both cases, there is very limited change in weight (< 1lb) measured on the 7th

day. If DWC were used to predict the symptom, we would likely end up having

either a large number of false positives, or miss the true positives altogether. On

the other hand, it is clear from the figure that the systolic and diastolic blood

pressures are less stable before the worsening of HF symptoms, suggesting that

they may serve as better predictors in this case.

4.3.1 Experiment Setup

WANDA’s second HF clinical trial is used as the data source for the experiments.

We were particularly interested in patients’ daily weight, systolic and diastolic

blood pressure, and heart rate measurements as they are relatively free of missing

data for most patients over the three-month period.

Patients also answer a series of 9 questions, as listed in Table 4.1, on a daily
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Table 4.1: Daily questionnaire

# Question

1 Are you coughing more than usual?

2 Are you more tired than usual?

3 Did you use an extra pillow last night?

4 Did you eat a low-salt diet?

5 Did you take your heart medications?

6 Did you take your water pill this morning?

7 Did you walk or exercise today?

8 Have you noticed increased difficulty in breathing?

9 Have you noticed increase in swelling of feet or ankles?

basis. We interpret a positive response to question 8 and 9 as a worsening of a

patient’s HF symptoms, whereas a negative or a lack of response is interpreted

as a stabilized HF condition. The answers are also crosschecked with nurses’ call

logs to remove any accidental false reporting. Based on these criteria there were

a total of 34 instances of worsening of HF symptoms self-reported by 9 patients

during the clinical trials.

Once instances of worsening HF symptoms have been identified, they are la-

beled as positive. All other instances that are at least 3 days away from the

positive instances are considered negative. Instances occurred within 3 days of

positive instances are discarded. A total of 9 features, listed in Table 4.2, are

extracted at each instance and used by the prediction algorithms.

Six different machine learning algorithms from the WANDA analytics engine

have been evaluated in the experiments. They are listed in Table 4.3 with a short

description of the algorithm and the corresponding parameters used. These algo-

rithms are chosen as they utilize a wide range of fundamentally different statistical

principles. This ensures that the results are based on the intrinsic discriminatory
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Table 4.2: Classification Features

Feature Description

dcs Daily change in systolic blood pressure

dcd Daily change in diastolic blood pressure

dcw Daily change in weight

sds.3d Standard deviation of systolic blood pressure over the past 3 days

sdd.3d Standard deviation of diastolic blood pressure over the past 3 days

sdw.3d Standard deviation of weight over the past 3 days

sds.7d Standard deviation of systolic blood pressure over the past 7 days

sdd.7d Standard deviation of diastolic blood pressure over the past 7 days

sdw.7d Standard deviation of weight over the past 7 days

power of the extracted features rather than a particular algorithm overfitting the

model. The same set of experiments is also conducted using simple thresholding

based on DWC of 2 pounds.

Several measures have been taken to ensure the fairness of the experiments.

Firstly, equal numbers of positive and negative instances are used in each ex-

periment to prevent biasing toward a particular class. Secondly, the results are

computed using ten-fold cross validation to guard against overfitting given the

relatively small number of instances. Finally, each experiment is conducted ten

times and the average results are reported, thus reducing the effect of outliers.

4.3.2 Results and Discussion

The algorithms are firstly evaluated in terms of their accuracy, sensitivity, and

specificity. They are computed based on the number of True Positives (TP), True

Negatives (TN), False Positives (FP), and False Negatives (FN) in the prediction

results
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Table 4.3: Classification Algorithms Used in Experiment
Algorithm Description Parameters

Näıve Bayes Classifier (NBC) NBC uses Bayes’ theorem and assumes each feature is conditionally

independent. The posterior probability of a class C given a set of

features F1, F2, ...Fn is therefore

p(C|F1, F2, ...Fn) ∝ p(C)
n∏

i=1

p(Fi|C)

The prior and likelihood can be calculated from the training set

directly and applies to the test set.

Nearest Neighbor (kNN) An unlabeled instance is classified based on its nearest k neighbors

from the training set based on majority vote. Euclidean distance of

the features is often used to determine the closeness of two instances

d =

√√√√ n∑
i=1

(xi − yi)2

where xi and yi are corresponding features from the two instances.

k = 5

Logistic Regression (LR) Logistic regression is a type of regression that predicts the outcome

of a binary depend variable (class) based on a set of independent

variables (features) Xi using the logistic function

p(x) =
1

1 + e−f(x)
, f(x) = β0 + β1X1 + β2X2 + ...+ +βiXi

where p(x) is the probability of x being class 1, given regression

coefficients β1...βi and intercept β0.

Voting Feature Interval (VFI) VFI classifies builds upper and lower bounds around each class for

each feature. Classification is based on majority voting, where a

vote for class C based from feature a is computed as

v(a, C) =
interval class count(a, i, C)

class count(C)

(
H(C|a)

max uncertainty

)

bias = 0.6

Ripple-Down Rule Learner (RIDOR) RIDOR is a version of Ripple Down Rule using the Indcut algorithm

where the default rules are first generated based on least error rate.

A set of exception rules are generated to predict classes other than

those covered by the default rules.

C4.5 Decision Tree (C4.5) C4.5 constructs a decision tree based on information entropy. Each

feature in the training set is evaluated for its information gain

IG(T, a) = H(T )−H(T |a) H(T ) = −
n∑

i=1

p(xi) ln p(xi)

Feature with the largest IG and have yet been used is chosen to

split the decision tree at each node until the confidence falls below

certain threshold.

confidence = 0.25
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Figure 4.3: Accuracy, sensitivity, and specificity of NBC, 5NN, LR, VFI, RIDO,

and C4.5 vs. DWC

Accuracy =
TF + TN

TF + FP + TN + FN

Sensitivity =
TP

TP + FN
, Specificity =

TN

TN + FP

The results for each algorithm are plotted in Figure 4.3. Since the num-

ber of positive and negative instances is balanced, the minimal accuracy of any

better-than-chance algorithm should be greater than 0.5. The figure shows that

predicting the worsening of HF symptoms using DWC seems to be only marginally

more accurate than guessing, with an accuracy of 0.519. This is not surprising

considering that only 15.9% of the positive instances have been classified as such,

whereas a substantial amount of negative instances (28.6%) turn out to have a

DWC of more than 2lb.

On the other hand, the algorithms from the WANDA analytics engine attain
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much higher accuracy. Three algorithms, NBC, LR, and RIDOR, are able to

correctly predict the worsening or stabilization of HF symptoms 74% of the time.

Even though VFI has the lowest accuracy of 0.696, it is still nearly 20% more

accurate than DWC. Furthermore, all six algorithms have sensitivity values that

are at least 45% greater than that of DWC. This suggests that the features listed

in Table III have a much stronger correlation to the worsening of HF symptoms

than simple daily weight change, which can be further confirmed by the high

specificity ranged from 0.696 (for kNN) to 0.87 (for RIDOR).

However, not all the features are equally predictive. In fact, we already know

that dcw has very limited predictive power based on the results for DWC. One way

to rank the features is based on their relationships with the class labels, such as

information gain, relevance, correlation etc. Many machine learning algorithms,

including the one used in our experiment, make use of these relationships directly

when constructing their statistical model by weighting the features differently.

Out of the 9 features, we discover that the algorithms consistently identify sds.3d,

sdd.3d, sds.7d, and sdd.7d as the most predictive one. Actually C4.5, RIDOR,

and LR even ignore the other features entirely when constructing the models.

Figure 4.4 shows the Receiver Operating Characteristic (ROC) curves for the

WANDA analytics engine algorithms and DWC. These curves demonstrate the

effect of varying the classification algorithm’s discrimination threshold has on

true positive rate (TPR) vs. true negative rate (TNR), which are calculated as

TPR =
TP

TP + FN
, FPR =

FP

TN + FP

A perfect algorithm will produce a point at the top left corner of the figure

where TPR = 1 and FPR = 0. On the other hand, an algorithm that guesses

randomly will produce a curve that follows the dotted 45-degree line in the figure

where TPR = FPR. Therefore, the area under the curve (AUC) is often used as
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Figure 4.4: ROC curve for NBC, kNN, LR, VFI, RIDOR, and C4.5 vs. DWC

a metric to gauge the performance of a classification algorithm.

It is clear from the figure that DWC is not significantly better than random

guessing. In fact, the AUC for DWC is estimated to be 0.573, which is less than

8% higher than that of a completely random guess. In comparison, the other

algorithms from the WANDA analytics engine perform significantly better. The

AUC ranged from 0.817 for LR to 0.621 for VFI. It is worth noting that NBC can

be tuned to achieve a decent TPR of 0.652 while minimizing FPR to 0 at the same

time. This makes NBC the most suitable algorithm to use when the consequence

of a false alarm is more costly than that of a missed prediction.

4.3.3 Error Bound Analysis

It is often important to find out the lower bound of the classification error in order

to put the accuracy of an algorithm into perspective. After all, a prediction algo-

rithm is only as good as the features given to it. The lowest error rate achievable
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by any binary classifier is bounded by the Bayes Error Rate,

p(error) =

∫
R2

p(x|w1)p(w1)dx+

∫
R1

p(x|w2)p(w2)dx

where R1 and R2 are the regions where x is misclassified given class distribu-

tions w1 and w2. Unfortunately, the distributions are unknown in reality and can

therefore only be estimated. Using the proof in [22], we can estimate the Bayes

Error Rate as half of the error rate of 1-NN, which can be obtained empirically

from the data.

As a result, the Bayes Error Rate is estimated to be 0.174. This implies a

theoretical optimal accuracy of 0.826, which is only about 9% higher than the

best accuracy achieved by the WANDA analytics engine. While this suggests

that the algorithms can be better tuned, the improvement may come at a cost of

reduced sensitivity or specificity. It is thus more fruitful to find features that have

stronger predictive power.

The other issue is whether such an error rate is acceptable in a real clinical

setting or not. This can be viewed as an optimization problem assuming the

resulting cost of missing a possible intervention and the cost of waste resource due

to false alarm can be estimated. By minimizing the overall cost, one can argue

the if a certain error rate is acceptable. However, such kinds of optimization often

neglect factors that are difficult to quantify, such as the well being of the patients.

Consequently, it is important to have input from clinical experts when evaluating

the error rate.

4.4 Summary

This chapter has introduced the design and implementation of a remote health

monitoring system called WANDA. The system is an end-to-end solution including
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a smartphone-based gateway that wirelessly collects data from various sensors, a

scalable cloud-based database with a RESTful web interface and PubSub system,

and an analytics engine capable of prognostic prediction using machine learning

and data mining algorithms. The system has also been successfully field validated

from three clinical trials involving heart failure patients.

Using real data collected from the clinical trial, we have demonstrated the

strength of WANDA’s analytics engine by accurately predicting the worsening of

HF symptoms in patients. Compared to the commonly accepted predictor of daily

weight changes, the algorithms of WANDA analytics engine have identified the

3-day and 7-day fluctuation of blood pressure readings to be highly correlated to

the worsening of HF symptoms. As a result, the WANDA analytics engine is able

to build prediction models that are up to 73% accurate, which is more than 20%

higher than using daily weight change alone. Furthermore, the sensitivity is also

improved by at least 45% when using these models. Finally, we have shown that

the accuracy of the WANDA analytics engine is only 9% lower than the estimated

upper bound.
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CHAPTER 5

Conclusion

Remote health motioning is the future of an affordable and salable health care sys-

tem. Not only can it provide physicians and care givers direct and instantaneous

access to a patient’s complete history, the data collected from remote health mon-

itoring can also offer the opportunity to take preventative and prognostic actions

based on reliable event prediction.

In this thesis, we presented the various challenges faced in event prediction for

remote health monitoring. In particular, we addressed four key issues in this area,

(a) Subsequence-based prediction, (b) Sequential pattern mining, (c) precursor

pattern discovery, and (d) predictions using discrete data. For each issue, we have

proposed generalized algorithms to process, extract key features, and make event

predictions based on the data collected from real patients or subjects.

For subsequence-based prediction, we present SmartFall, the first automatic

fall detection and cause identification system based on subsequence matching.

SmartFall uses data from the accelerometers embedded closely to the handle of

the SmartCane to make inferences of current status. The detection algorithm

differs fundamentally from most existing thresholding-based fall detection solu-

tions in that the overall shape of the sensor signal is considered. When the shape

matches the signature of a typical fall pattern, the alarm is raised and the signal

immediately before and after the fall is recorded for further cause analysis. Sev-

eral experiments simulating various types of fall and other common daily activities

have been conducted to evaluate the fall detection performance of SmartFall. The
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results have indicated that SmartFall is able to detect nearly all cases of falling

in the experiment while achieving extremely low false-positive rates for most non-

falling activities. Similar experiments, which encompass four scenarios, trip, slip,

dizziness, and loss of balance, have also been conducted to measure the accuracy

of SmartFall’s cause identification algorithm. A classification accuracy of 62-79%

has been achieved when four scenarios are considered as independent classes and

the sample is restricted to individual test subjects. The accuracy is improved to

83-93% when scenarios are grouped into intrinsic and extrinsic classes. We have

also shown that DTW is more accurate than Euclidean Distance for intrinsic type

of falls but less suited for extrinsic ones. Furthermore, applying a 2% constrain

to DTW, instead of the commonly used 10% constrain, gives a noticeable im-

provement in accuracy for this particular application. Experimental results also

suggest that the fall patterns generated by different test subjects are strongly cor-

related. This allows us to reliability classification the cause of a persons fall based

on existing fall patterns generated from other subjects.

For sequential pattern mining, we have presented an algorithm called FMM to

mine the Minimal Distinguishing Subsequence. FMM employs a fast and memory-

efficient subsequence testing procedure, a BFS-based candidate generation scheme

with powerful pruning strategies, and a simple on-the-fly minimization process.

Together these changes make FMM a much more scalable algorithm than the state

of the art MDS mining algorithm, ConSGapMiner. We use four real-world datasets

to demonstrate the performance advantage of FMM over ConSGapMiner. The ex-

perimental results show that FMM consistently outperforms ConSGapMiner by a

factor of 1.9 to 7.7 times over a wide range of δ. This is mainly due to the facts

that a) FMM’s support counting process scales significantly better with gmax and

the number of sequences than the bitset-based approach used by ConSGapMiner;

b) The max-suffix pruning strategy employed by FMM proves to remove the num-

ber of generated candidate sequences by 27% to 82% over a wide range of δ. The
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strategy also helps reduce the number of non-minimal distinguishing subsequences,

which in turn speeds up the minimization process. In terms of space usage, thanks

to the memory-efficient subsequence testing algorithm and on-the-fly minimiza-

tion, the peak memory usage of FMM remains constant despite a 16-fold increase

in the number of sequences. At the same time, ConSGapMiner needs to more

than double its memory footprint to accommodate the extra sequences.

For precursor pattern discovery, we have presented a generalized algorithm

that is able to discover such patterns without domain-specific knowledge and

expertise. The algorithm is classifier agonistic and is applicable to a wide range

of medical conditions. Experiments using three real-world datasets show that the

algorithm can achieve a prediction accuracy as high as 84.7% without producing

high false-positive rate. Furthermore, using the precursor patterns we are able

to infer non-trivial knowledge such as the most relevant EEG channels to predict

epileptic seizure and the minimal sampling rate required for predicting ICU alerts.

Finally, for predictions using discrete data, we have introduced the design and

implementation of an complete remote health monitoring system called WANDA.

The system is an end-to-end solution including a smartphone-based gateway that

wirelessly collects data from various sensors, a scalable cloud-based database with

a RESTful web interface and PubSub system, and an analytics engine capable of

prognostic prediction using machine learning and data mining algorithms. The

system has also been successfully field validated from three clinical trials involving

heart failure patients. Using real data collected from the clinical trial, we have

demonstrated the strength of WANDA’s analytics engine by accurately predicting

the worsening of HF symptoms in patients. Compared to the commonly accepted

predictor of daily weight changes, the algorithms of WANDA analytics engine have

identified the 3-day and 7-day fluctuation of blood pressure readings to be highly

correlated to the worsening of HF symptoms. As a result, the WANDA analytics

engine is able to build prediction models that are up to 73% accurate, which is
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more than 20% higher than using daily weight change alone. Furthermore, the

sensitivity is also improved by at least 45% when using these models. Finally, we

have shown that the accuracy of the WANDA analytics engine is only 9% lower

than the estimated upper bound.
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