Skip to main content
eScholarship
Open Access Publications from the University of California

Mapping copy number variation by population-scale genome sequencing.

  • Author(s): Mills, Ryan
  • Walter, Klaudia
  • Stewart, Chip
  • Handsaker, Robert
  • Chen, Ken
  • Alkan, Can
  • Abyzov, Alexej
  • Yoon, Seungtai
  • Ye, Kai
  • Cheetham, R
  • Chinwalla, Asif
  • Conrad, Donald
  • Fu, Yutao
  • Grubert, Fabian
  • Hajirasouliha, Iman
  • Hormozdiari, Fereydoun
  • Iakoucheva, Lilia
  • Iqbal, Zamin
  • Kang, Shuli
  • Kidd, Jeffrey
  • Konkel, Miriam
  • Korn, Joshua
  • Khurana, Ekta
  • Kural, Deniz
  • Lam, Hugo
  • Leng, Jing
  • Li, Ruiqiang
  • Li, Yingrui
  • Lin, Chang-Yun
  • Luo, Ruibang
  • Mu, Xinmeng
  • Nemesh, James
  • Peckham, Heather
  • Rausch, Tobias
  • Scally, Aylwyn
  • Shi, Xinghua
  • Stromberg, Michael
  • Stütz, Adrian
  • Urban, Alexander
  • Walker, Jerilyn
  • Wu, Jiantao
  • Zhang, Yujun
  • Zhang, Zhengdong
  • Batzer, Mark
  • Ding, Li
  • Marth, Gabor
  • McVean, Gil
  • Sebat, Jonathan
  • Snyder, Michael
  • Wang, Jun
  • Ye, Kenny
  • Eichler, Evan
  • Gerstein, Mark
  • Hurles, Matthew
  • Lee, Charles
  • McCarroll, Steven
  • Korbel, Jan
  • et al.
Abstract

Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications. Most SVs (53%) were mapped to nucleotide resolution, which facilitated analysing their origin and functional impact. We examined numerous whole and partial gene deletions with a genotyping approach and observed a depletion of gene disruptions amongst high frequency deletions. Furthermore, we observed differences in the size spectra of SVs originating from distinct formation mechanisms, and constructed a map of SV hotspots formed by common mechanisms. Our analytical framework and SV map serves as a resource for sequencing-based association studies.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View