Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Mechanistic Study on the Reduction of SWCNT‐induced Cytotoxicity by Albumin Coating

Abstract

Single walled carbon nanotubes (SWCNTs) are utilized in many areas, accompanied with the ever rising safety concerns. Coating the SWCNTs by serum albumin has shown promises in reduction of their cytotoxicity. The cause of toxicity reduction could be due to the blockage of cellular protein adsorption by bovine serum albumin (BSA). Here, our study explored the mechanism of toxicity reduction from the point of view of protein adsorption. Different loadings of BSA led to varied surface coverage of the SWCNTs, which was positively related to the level of cytotoxicity. In addition, the BSA-coated SWCNTs were tested for their surface morphology change, cellular uptake, and adsorption of cellular proteins. BSA could be competed off the SWCNT surface by the cytosol proteins, and thus a higher BSA loading was needed to provide better protection to the cells. Cellular uptake was also reduced with a higher BSA loading. Moreover, the BSA coating changed the surface property of SWCNTs, and as a consequence, altered the types of proteins adsorbed by the SWCNTs. Our results support that adsorption of BSA reduces cellular uptake of SWCNTs as well as adsorption of cellular proteins on SWCNTs, both contributing to the much lower cytotoxicity observed for the BSA-coated SWCNTs.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View