Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Deep Learning-Assisted Multiphoton Microscopy to Reduce Light Exposure and Expedite Imaging in Tissues With High and Low Light Sensitivity.

Abstract

Purpose

Two-photon excitation fluorescence (2PEF) reveals information about tissue function. Concerns for phototoxicity demand lower light exposure during imaging. Reducing excitation light reduces the quality of the image by limiting fluorescence emission. We applied deep learning (DL) super-resolution techniques to images acquired from low light exposure to yield high-resolution images of retinal and skin tissues.

Methods

We analyzed two methods: a method based on U-Net and a patch-based regression method using paired images of skin (550) and retina (1200), each with low- and high-resolution paired images. The retina dataset was acquired at low and high laser powers from retinal organoids, and the skin dataset was obtained from averaging 7 to 15 frames or 70 frames. Mean squared error (MSE) and the structural similarity index measure (SSIM) were outcome measures for DL algorithm performance.

Results

For the skin dataset, the patches method achieved a lower MSE (3.768) compared with U-Net (4.032) and a high SSIM (0.824) compared with U-Net (0.783). For the retinal dataset, the patches method achieved an average MSE of 27,611 compared with 146,855 for the U-Net method and an average SSIM of 0.636 compared with 0.607 for the U-Net method. The patches method was slower (303 seconds) than the U-Net method (<1 second).

Conclusions

DL can reduce excitation light exposure in 2PEF imaging while preserving image quality metrics.

Translational relevance

DL methods will aid in translating 2PEF imaging from benchtop systems to in vivo imaging of light-sensitive tissues such as the retina.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View